Inaccessible Entropy Iftach Haitner Microsoft Research Omer Reingold Weizmann & Microsoft Hoeteck Wee Queens College, CUNY Salil Vadhan Harvard University.

Slides:



Advertisements
Similar presentations
On the (Im)Possibility of Arthur-Merlin Witness Hiding Protocols Iftach Haitner, Alon Rosen and Ronen Shaltiel 1.
Advertisements

Lower Bounds for Non-Black-Box Zero Knowledge Boaz Barak (IAS*) Yehuda Lindell (IBM) Salil Vadhan (Harvard) *Work done while in Weizmann Institute. Short.
Are PCPs Inherent in Efficient Arguments? Guy Rothblum, MIT ) MSR-SVC ) IAS Salil Vadhan, Harvard University.
Finding Collisions in Interactive Protocols A Tight Lower Bound on the Round Complexity of Statistically-Hiding Commitments Iftach Haitner, Jonathan Hoch,
A Parallel Repetition Theorem for Any Interactive Argument Or On the Benefits of Cutting Your Argument Short Iftach Haitner Microsoft Research New England.
Statistical Zero-Knowledge Arguments for NP from Any One-Way Function Salil Vadhan Minh Nguyen Shien Jin Ong Harvard University.
Inaccessible Entropy Iftach Haitner Microsoft Research Omer Reingold Weizmann & Microsoft Hoeteck Wee Queens College, CUNY Salil Vadhan Harvard University.
1 Efficient Pseudorandom Generators from Exponentially Hard One-Way Functions Iftach Haitner, Danny Harnik, Omer Reingold.
Inaccessible Entropy Iftach Haitner Microsoft Research Omer Reingold Weizmann Institute Hoeteck Wee Queens College, CUNY Salil Vadhan Harvard University.
1 Reducing Complexity Assumptions for Statistically-Hiding Commitment Iftach Haitner Omer Horviz Jonathan Katz Chiu-Yuen Koo Ruggero Morselli Ronen Shaltiel.
Foundations of Cryptography Lecture 10 Lecturer: Moni Naor.
The Complexity of Zero-Knowledge Proofs Salil Vadhan Harvard University.
Efficient Zero-Knowledge Proof Systems Jens Groth University College London.
Semi-Honest to Malicious Oblivious-Transfer The Black-box Way Iftach Haitner Weizmann Institute of Science.
The Many Entropies of One-Way Functions Thomas Holenstein Iftach Haitner Salil VadhanHoeteck Wee Joint With Omer Reingold.
Computational Security. Overview Goal: Obtain computational security against an active adversary. Hope: under a reasonable cryptographic assumption, obtain.
RECENT PROGRESS IN LEAKAGE-RESILIENT CRYPTOGRAPHY Daniel Wichs (NYU) (China Theory Week 2010)
On the Composition of Public- Coin Zero-Knowledge Protocols Rafael Pass (Cornell) Wei-Lung Dustin Tseng (Cornell) Douglas Wiktröm (KTH) 1.
Using Nondeterminism to Amplify Hardness Emanuele Viola Joint work with: Alex Healy and Salil Vadhan Harvard University.
On the (Im)Possibility of Key Dependent Encryption Iftach Haitner Microsoft Research TexPoint fonts used in EMF. Read the TexPoint manual before you delete.
A Parallel Repetition Theorem for Any Interactive Argument Iftach Haitner Microsoft Research TexPoint fonts used in EMF. Read the TexPoint manual before.
CS426Fall 2010/Lecture 351 Computer Security CS 426 Lecture 35 Commitment & Zero Knowledge Proofs.
1 Slides by Roel Apfelbaum & Eti Ezra. Enhanced by Amit Kagan. Adapted from Oded Goldreich’s course lecture notes.
Ring Signatures of Sub- linear Size without Random Oracles Nishanth Chandran Jens Groth Amit Sahai University of California Los Angeles TexPoint fonts.
The Bright Side of Hardness Relating Computational Complexity and Cryptography Oded Goldreich Weizmann Institute of Science.
Lecturer: Moni Naor Foundations of Cryptography Lecture 12: Commitment and Zero-Knowledge.
1 Zaps and Apps Cynthia Dwork Microsoft Research Moni Naor Weizmann Institute of Science.
Introduction to Modern Cryptography, Lecture 7/6/07 Zero Knowledge and Applications.
GOING DOWN HILL: MORE EFFICIENT PSEUDORANDOM GENERATORS FROM ANY ONE-WAY FUNCTION Joint with Iftach Haitner and Salil Vadhan Omer Reingold&
The Many Entropies of One-Way Functions Thomas Holenstein Iftach Haitner Salil VadhanHoeteck Wee Joint With Omer Reingold.
On Everlasting Security in the Hybrid Bounded Storage Model Danny Harnik Moni Naor.
1 A New Interactive Hashing Theorem Iftach Haitner and Omer Reingold WEIZMANN INSTITUTE OF SCIENCE.
1 On the Power of the Randomized Iterate Iftach Haitner, Danny Harnik, Omer Reingold.
Foundations of Cryptography Lecture 9 Lecturer: Moni Naor.
Slide 1 Vitaly Shmatikov CS 380S Oblivious Transfer and Secure Multi-Party Computation With Malicious Parties.
Foundations of Cryptography Lecture 8 Lecturer: Moni Naor.
Computational Entropy Joint works with Iftach Haitner (Tel Aviv), Thomas Holenstein (ETH Zurich), Omer Reingold (MSR-SVC), Hoeteck Wee (George Washington.
Foundations of Cryptography Rahul Jain CS6209, Jan – April 2011
Lecture 12 Commitment Schemes and Zero-Knowledge Protocols Stefan Dziembowski University of Rome La Sapienza critto09.googlepages.com.
GOING DOWN HILL : EFFICIENCY IMPROVEMENTS IN CONSTRUCTING PSEUDORANDOM GENERATORS FROM ONE-WAY FUNCTIONS Iftach Haitner Omer Reingold Salil Vadhan.
Can we base cryptography on SZK-Hardness? Salil Vadhan Harvard University.
A Linear Lower Bound on the Communication Complexity of Single-Server PIR Weizmann Institute of Science Israel Iftach HaitnerJonathan HochGil Segev.
Topic 22: Digital Schemes (2)
Computational Entropy Joint works with Iftach Haitner (Tel Aviv), Thomas Holenstein (ETH Zurich), Omer Reingold (MSR-SVC), Hoeteck Wee (George Washington.
On Constructing Parallel Pseudorandom Generators from One-Way Functions Emanuele Viola Harvard University June 2005.
Fall 2004/Lecture 201 Cryptography CS 555 Lecture 20-b Zero-Knowledge Proof.
Improved Non-Committing Encryption with Application to Adaptively Secure Protocols joint work with Dana Dachman-Soled (Columbia Univ.), Tal Malkin (Columbia.
Introduction to Modern Cryptography Sharif University Spring 2015 Data and Network Security Lab Sharif University of Technology Department of Computer.
Foundations of Cryptography Lecture 6 Lecturer: Moni Naor.
On the Communication Complexity of SFE with Long Output Daniel Wichs (Northeastern) joint work with Pavel Hubáček.
Some Fundamental Insights of Computational Complexity Theory Avi Wigderson IAS, Princeton, NJ Hebrew University, Jerusalem.
New Techniques for NIZK Jens Groth Rafail Ostrovsky Amit Sahai University of California Los Angeles.
On Constructing Parallel Pseudorandom Generators from One-Way Functions Emanuele Viola Harvard University June 2005.
CRYPTOGRAPHY AND NP-HARDNESS Andrej Bogdanov Chinese University of Hong Kong MACS Foundations of Cryptography| January 2016.
Honest-Verifier Statistical Zero-Knowledge Equals General Statistical Zero-Knowledge Oded Goldreich (Weizmann) Amit Sahai (MIT) Salil Vadhan (MIT)
CRYPTOGRAPHIC HARDNESS OTHER FUNCTIONALITIES Andrej Bogdanov Chinese University of Hong Kong MACS Foundations of Cryptography| January 2016.
Iftach Haitner and Eran Omri Coin Flipping with Constant Bias Implies One-Way Functions TexPoint fonts used in EMF. Read the TexPoint manual before you.
Topic 36: Zero-Knowledge Proofs
Derandomization & Cryptography
On the Size of Pairing-based Non-interactive Arguments
Sampling of min-entropy relative to quantum knowledge Robert König in collaboration with Renato Renner TexPoint fonts used in EMF. Read the TexPoint.
Topic 14: Random Oracle Model, Hashing Applications
Cryptography Lecture 19.
cryptographic protocols 2014, lecture 12 Getting full zero knowledge
On the Efficiency of 2 Generic Cryptographic Constructions
Quantum-security of commitment schemes and hash functions
Cryptographic Applications of Randomness Extractors
Short Pairing-based Non-interactive Zero-Knowledge Arguments
Emanuele Viola Harvard University June 2005
Presentation transcript:

Inaccessible Entropy Iftach Haitner Microsoft Research Omer Reingold Weizmann & Microsoft Hoeteck Wee Queens College, CUNY Salil Vadhan Harvard University TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AAA A

outline  Entropy  Secrecy & Pseudoentropy  Unforgeability & Inaccessible Entropy  Applications

Def: The Shannon entropy of r.v. X is H(X) = E x à X [log(1/Pr[X=x)]  H(X) = “Bits of randomness in X (on avg)”  0 · H(X) · log |Supp(X)|  Conditional Entropy: H(X|Y) = E y à Y [H(X| Y=y )] Entropy X concentrated on single point X uniform on Supp(X)

Conditional Entropy H(X|Y) = E y à Y [H(X| Y=y )]  Chain Rule: H(X,Y) = H(Y) + H(X|Y)  H(X)-H(Y) · H(X|Y) · H(X)  H(X|Y) = 0 iff 9 f X=f(Y).

Worst-Case Entropy Measures  Min-Entropy: H 1 (X) = min x log(1/Pr[X=x])  Max-Entropy: H 0 (X) = log |Supp(X)| H 1 (X) · H(X) · H 0 (X)

outline  Entropy  Secrecy & Pseudoentropy  Unforgeability & Inaccessible Entropy  Applications

Perfect Secrecy & Entropy Def [Sh49]: Encryption scheme (Enc,Dec) has perfect secrecy if 8 m,m’ 2 {0,1} n Enc K (m) & Enc K (m’) are identically distributed for a random key K. Thm [Sh49]: Perfect secrecy ) |K| ¸ n

Perfect Secrecy ) |K| ¸ n Proof:  Perfect secrecy ) (M,Enc K (M)) ´ (M,Enc K (M’)) for M,M’ Ã {0,1} n ) H(M|Enc K (M)) = n  Decryptability ) H(M|Enc K (M),K) = 0 ) H(M|Enc K (M)) · H(K).

Computational Secrecy Def [GM82]: Encryption scheme (Enc,Dec) has computational secrecy if 8 m,m’ 2 {0,1} n Enc K (m) & Enc K (m’) are computationally indistinguishable. ) can have |K| ¿ n.

Where Shannon’s Proof Breaks  Computational secrecy ) (M,Enc K (M)) ´ c (M,Enc K (M’)) for M,M’ Ã {0,1} n ) “H pseudo (M|Enc K (M))” = n  Decryptability ) H(M|Enc K (M)) · H(K). Key point: can have H pseudo (X) À H(X) e.g. X = G(U k ) for PRG G : {0,1} k ! {0,1} n

Pseudoentropy Def [HILL90]: X has pseudoentropy ¸ k iff there exists a random variable Y s.t. 1.Y ´ c X 2.H(Y) ¸ k Pseudoentropy Generator: G S Ã {0,1} n X Y ´ c

Application of Pseudoentropy Thm [HILL90]: 9 OWF ) 9 PRG Proof outline: OWF X with pseudo-min-entropy ¸ H 0 (X)+poly(n) X with pseudoentropy ¸ H(X)+1/poly(n) PRG hardcore bit [GL89]+hashing repetitions hashing

outline  Entropy  Secrecy & Pseudoentropy  Unforgeability & Inaccessible Entropy  Applications

Unforgeability  Crypto is not just about secrecy.  Unforgeability: security properties saying that it has hard for an adversary to generate “valid” messages. –Unforgeability of MACs, Digital Signatures –Collision-resistance of hash functions –Binding of commitment schemes  Cf. decision problems vs. search/sampling problems.

Ex: Collision-resistant Hashing  Shrinking  Collision Resistance: Given f ÃF, an efficient A cannot output x 1  x 2 such that f(x 1 ) = f(x 2 ) F = { f : {0,1} n ! {0,1} n-k }

Ex: Collision-resistant Hashing  Shrinking: H(X | F,Y) ¸ k  Collision Resistance: From (even a cheating) G’s point of view, X is determined by (F,Y)  X has “accessible” entropy 0 F = {f : {0,1} n ! {0,1} n-k } G X Ã {0,1} n Y= F(X) F ÃF X

Ex: Collision-resistant Hashing  Collision Resistance: H(X |F,Y,S 1 ) = neg(n) for every efficient G *. F = {f : {0,1} n ! {0,1} n-k } G * S 1 Ã {0,1} r Y F ÃF X  F -1 (Y) S 2 Ã {0,1} r

Measuring Accessible Entropy Goal: A useful entropy measure to capture possibility that H acc (X) ¿ H(X) 1st attempt: X has accessible entropy at most k if there is a random variable Y s.t. 1.Y ´ c X 2.H(Y) · k Not useful! every X is indistinguishable from some Y of entropy polylog(n).

Inaccessible Entropy Idea: A generator G has inaccessible entropy if H(G’s outputs from an observer’s perspective) > H(G * ’s outputs from G * ’s perspective) Real Entropy Accessible Entropy

Real Entropy Def: The real entropy of G is H(Y 1,….,Y m |Z)  i H(Y i | Z,Y 1,…,Y i-1 ) G R Ã {0,1} n Y1Y1 Z Y2Y2 YmYm

Accessible Entropy Def: G has accessible entropy at most k, if 8 PPT G *   i H(Y i |Z,S 1,S 2,…,S i-1 ) · k  Inaccessible entropy = real – accessible entropy  Unbounded G * can achieve real entropy. G* Y1Y1 Z Y2Y2 YmYm S1S1 S2S2 SmSm R s.t. G(Z,R)=(Y 1,….,Y m )

OWF  Inaccessible Entropy Claim:  Real entropy = n  Accessible entropy < n-log n [cf. Omer’s talk: G(x)=(f(x),x 1,…,x n ) next-bit pseudoentropy n+log n for OWP f] G X Ã {0,1} n f(X) 1 f(X) 2 f(X) n Given a one-way function f : {0,1} n  {0,1} n, define X

Y m+1 X YnYn 1 0 Y2Y2 1 OWF  Inaccessible Entropy Claim: Accessible entropy < n-log n  Suppose  G * s.t.  i H(Y i |S 1,…,S i-1 )  n-log n  Then can invert f on input Y’ by sequentially finding S 1,..,S n s.t. Y i =Y’ i (via sampling).  High accessible entropy  success on random Y=f(X) w.p. 1/poly(n). G* Y1Y1 S1S1 S2S2 SnSn S m R=Y m+1 Y’ = 0 1 0

Real Entropy AB B1B1 A1A1 B2B2 A2A2 BmBm AmAm Def: The real entropy of (A,B) is  i H(A i | B 1,A 1,…,B i )

Accessible Entropy A*A* B B1B1 A1A1 B2B2 A2A2 BmBm AmAm  Tosses coins S i  Sends message A i  Privately outputs justification W i (e.g. consistent coins of honest A) coins S 1 coins S 2 coins S m What A * does at each round W1W1 W2W2 WmWm

Accessible Entropy A*A* B B1B1 A1A1 B2B2 A2A2 BmBm AmAm coins S 1 coins S 2 coins S m W1W1 W2W2 WmWm Def: (A,B) has accessible entropy at most k if for every PPT A *  i H(A i |B 1,S 1,B 2,S 2,…,S i-1,B i ) · k Remarks 1.Needs adjustment in case A * outputs invalid justification. 2.Unbounded A * can achieve real entropy. never Assume

Ex: Collision-resistant Hashing Real Entropy= H(Y|F)+H(X|Y,F) = H(X|F) = n AB F Ã F F = { f : {0,1} n ! {0,1} n-k } F Y X X Ã {0,1} n Y=F(X)

Ex: Collision-resistant Hashing Accessible Entropy= H(Y|F)+H(X|F,S 1 ) · (n-k) + neg(n) A*A* B F Ã F F = { f : {0,1} n ! {0,1} n-k } F Y X toss coins S 1 toss coins S 2

outline  Entropy  Secrecy & Pseudoentropy  Unforgeability & Inaccessible Entropy  Applications

Commitment Schemes

m COMMIT STAGE SR

m R Commitment Schemes S REVEAL STAGE

Commitment Schemes COMMIT STAGE accept/ reject SR m 2 {0,1} n REVEAL STAGE (m,K)

Security of Commitments COMMIT STAGE accept/ reject SR m 2 {0,1} n REVEAL STAGE (m,K)  Hiding –Statistical –Computational  Binding –Statistical –Computational COMMIT (m) & COMMIT (m’) indistinguishable even to cheating R* Even cheating S * cannot reveal (m,K), (m’,K’) with m  m’

Statistical Security? COMMIT STAGE accept/ reject SR m 2 {0,1} t REVEAL STAGE (m,K)  Hiding –Statistical –Computational  Binding –Statistical –Computational Impossible!

Statistical Binding COMMIT STAGE accept/ reject SR m 2 {0,1} n REVEAL STAGE (m,K)  Hiding –Statistical –Computational  Binding –Statistical –Computational Thm [HILL90,Naor91]: One-way functions ) Statistically Binding Commitments

Statistical Hiding COMMIT STAGE accept/ reject SR m 2 {0,1} n REVEAL STAGE (m,K)  Hiding –Statistical –Computational  Binding –Statistical –Computational Thm [HNORV07]: One-way functions ) Statistically Hiding Commitments Too Complicated!

Our Results I  Much simpler proof that OWF ) Statistically Hiding Commitments via accessible entropy.  Conceptually parallels [HILL90,Naor91] construction of PRGs & Statistically Binding Commitments from OWF.  “Nonuniform” version achieves optimal round complexity, O(n/log n) [HHRS07]

Our Results II Thm: Assume one-way functions exist. Then: NP has constant-round parallelizable ZK proofs with “black-box simulation” m constant-round statistically hiding commitments exist. ( * due to [GK96,G01], novelty is  )

Statistically Hiding Commitments & Inaccessible Entropy COMMIT STAGE SR M Ã {0,1} n REVEAL STAGE M Statistical Hiding: H(M|C) = n - neg(n) K C

Statistically Hiding Commitments & Inaccessible Entropy COMMIT STAGE S*S* R REVEAL STAGE M Statistical Hiding: H(M|C) = n - neg(n) Comp’l Binding: For every PPT S * H(M|C,S 1 ) = neg(n)  “inaccessible entropy for protocols” K C coins S 1 coins S 2

OWF ) Statistically Hiding Commitments: Our Proof OWF G with real min-entropy ¸ accessible entropy+poly(n) G with real entropy ¸ accessible entropy+log n statistically hiding commitment done repetitions cut & choose & parallel rep (interactive) hashing [DHRS07] +UOWHFs [NY89,Rom90] “m-phase” commitment

Cf. OWF ) Statistically Binding Commitment [HILL90,Nao91] OWF X with pseudo-min-entropy ¸ H 0 (X)+poly(n) X with pseudoentropy ¸ H(X)+1/poly(n) PRG hardcore bit [GL89]+hashing repetitions hashing Statistically binding commitment expand output & translate

OWF ) Statistically Hiding Commitments: Our Proof OWF (A,B) with real min-entropy ¸ accessible entropy+poly(n) (A,B) with real entropy ¸ accessible entropy+log n statistically hiding commitment interactive hashing [NOVY92,HR07] repetitions cut & choose (interactive) hashing [DHRS07] +UOWHFs [NY89,Rom90] “m-phase” commitment

OWF ) Inaccessible Entropy AB Choose linearly indep. B 1,…,B m à {0,1} m f : {0,1} n ! {0,1} m OWF B1B1 h B 1,Y i X à {0,1} n Y=f(X)  Real Entropy = n  Can show: Accessible Entropy · n-log n BmBm h B m,Y i X

Claim: Accessible Entropy · n-log n A*A* B f : {0,1} n ! {0,1} m OWF. B1B1 h B 1,Y i BmBm h B m,Y i X BtBt h B t,Y i For simplicity, assume |f -1 (y)| = 2 k 8 y 2 Im(f) entropy · k entropy · t = n-k-2log n Claim: entropy = neg(n)

Claim: Accessible Entropy · n-log n A*A* B f : {0,1} n ! {0,1} m OWF. B1B1 h B 1,Y i BtBt h B t,Y i For simplicity, assume |f -1 (y)| = 2 k 8 y 2 Im(f). t=n-k-2log n Claim: 9 at most one consistent Y s.t. A * can produce a preimage (except w/neg prob,)

Claim: Accessible Entropy · n-log n A*A* B f : {0,1} n ! {0,1} m OWF. B1B1 h B 1,Y i BtBt h B t,Y i For simplicity, assume |f -1 (y)| = 2 k 8 y 2 Im(f). t=n-k-2log n Claim: 9 at most one consistent Y s.t. A * can produce a preimage (except w/neg prob,) Im(f) poly(n) Interactive Hashing Thms [NOVY92,HR07]: A * can “control” at most 1 consistent value

Claim: Accessible Entropy · n-log n A*A* B f : {0,1} n ! {0,1} m OWF. B1B1 h B 1,Y i BmBm h B m,Y i X BtBt h B t,Y i For simplicity, assume |f -1 (y)| = 2 k 8 y 2 Im(f) entropy · k entropy · t = n-k-2log n entropy = neg(n) Analysis holds whenever |f -1 (Y)| ¼ 2 k Choice of k contributes entropy · log n

Other Applications  Simpler/improved universal one-way hash functions from OWF [HRVW09b]  Inspired simpler/improved pseudorandom generators from OWF [HRV09]

Conclusion Complexity-based cryptography is possible because of gaps between real & computational entropy. Secrecy pseudoentropy > real entropy Unforgeability accessible entropy < real entropy

Research Directions  Formally unify inaccessible entropy and pseudoentropy.  Complexity-theoretic applications of inaccessible entropy  Remove “parallelizable” condition from ZK result.  Use inaccessible entropy for new understanding/constructions of MACS and digital signatures.

Benefit of Statistical Hiding In most protocols that use commitments:  Binding only required during protocol execution –Depends on adversary’s current capabilities –Safe to be computational  Hiding may matter long after execution –Adversary may gain computational resources –Hardness assumption may be broken –Statistical hiding ) “everlasting secrecy”

Example: Zero Knowledge for NP [Goldreich-Micali-Wigderson86] Hiding ) Zero Knowledge –Verifier learns nothing other than x 2 L Binding ) Soundness –Prover cannot convince verifier if x  L (1,4) PV Corollary: One-Way Functions ) Statistical Zero Knowledge “Arguments” for NP.