Synthesis, Characterization, and Formation Constant Studies of Novel Bifunctional Ligands for Sensing Copper, Zinc, and Iron Alexis Kasparian, Lea Nyiranshuti,

Slides:



Advertisements
Similar presentations
The Organic Chemistry of Enzyme-Catalyzed Reactions Revised Edition
Advertisements

Single-Chain Nanoparticle Fabrication via Photodimerization of Pendant Anthracene ROMP Polymer Mark F. Cashman, Peter G. Frank*, Erik B. Berda* Department.
Hydrogen Bonding within Tyrosinate-Bound Iron Complexes Acknowledgments I would like to thank Kyle Rodriguez and Christian Tooley for advising me through.
Synthesis of Magnetic Room Temperature Ionic Liquids Acknowledgments I would like to thank Roy Planalp for his help for his help in organization and advice.
Introduction Hydrogenases 1 are diverse enzymes: Ability to reduce H + to H 2 gas. Implications in the search for clean fuel sources, as hydrogen gas producing.
Synthesis and Fluorometric Analysis of a Metal Ion Sensitive Polymer Alexis Kasparian, Lea Nyiranshuti, Christian Tooley, Roy Planalp
The oxidation of phenylethanol and two derivatives bearing increasingly electron-donating substituents indicates a trend whereby more electron-rich alcohols.
Chain Propagation for Polyethylene and Polypropylene Polymerization with Late Metal Homogeneous Catalysts Dean M. Philipp, Richard P. Muller, and William.
Synthesis of [MoCp(CO) 2 (COCH 3 )(P(n-Bu) 3 )] : Investigation of an Air-Sensitive Migratory-Insertion Acknowledgments I’d like to thank the Advanced.
Iron-Catalyzed Direct Arylation through an Aryl Radical Transfer Pathway Acknowledgments I would like to thank the Department of Chemistry, UNH, for funding.
Anti-Cancer Drug and its ability to be used in biological systems Acknowledgments A big thank you to the Miller and Zercher research groups for lending.
Further Attempts Towards the Synthesis of Benzo-Annelated Cross-Bridged Cyclam Synthesis of Cross-Bridged Benzocyclam The Department of Chemistry of the.
Chain Extension-Mannich Reactions with Sulfonyl Imines Acknowledgments This work would not have been possible without the help of Dr. Zercher, Deepthi.
Synthetic Approach to 5,6-Benzo-1-azabicyclo[2.2.2]octan- 2-one: A Lactam having Zero Resonance Energy Meghan Tobin, Dr. Arthur Greenberg, Jessica Morgan.
CHAPTER 12 ELECTRODE POTENTIALS AND THEIR APPLICATIONS TO XIDATION/REDUCTION TITRATIONS Introduction to Analytical Chemistry.
Stabilizing Transition-Metal-Alkylthiolate Bonds via Secondary Sphere Hydrogen Bonding Ryan L. Hall and Samuel Pazicni. Department of Chemistry, University.
Acknowledgments I would like to thank the Advanced Inorganic Lab Staff as well as the entire UNH Chemistry Department for funding. Introduction Electrochromic.
N-Propanol Addition n-Butanol Addition n-Pentanol Additon 4.5 % 9% Synthesis of Copper Microspheres Via a Two-Phase System Daniel Darcy, Lea Nyiranshuti,
Elucidation of the intra-chain radical mechanism in poly(norbornene imide) single-chain nanoparticle formation Justin P. Cole, Jacob J. Lessard, Christopher.
Single-Chain Nanoparticles from Sequenced Polyolefins Acknowledgments Thank you to Dr. Erik Berda and the Berda research group for allowing me to join.
Exploration into the Synthesis and Analysis of a Novel Sensor for Biological Metal Ions Alexis Kasparian Advisor: Dr. Roy Planalp
Nanoparticles Atom transfer radical polymerization was used to incorporate alkoxyamine-functionalized monomers into a poly(methyl methacrylate)-based polymer.
Metals are necessary for life, however excess metal ions can lead to deleterious effect on aquatic organisms and human health. For example, Cu(II) can.
Effect of Cu(II) on the Aggregation of PolyNIPAM-co-Bypiridine Modified-Silica Nanoparticles Jean Remy Mutumwa* and William R. Seitz Department of Chemistry,
Four-Step Synthesis of N,N-di(2-pyridylmethyl)-propylacrylamide: a Ligand to be Used in the Detection of Copper Four-Step Synthesis of N,N-di(2-pyridylmethyl)-propylacrylamide:
Modeling N–H ・・・ O Hydrogen Bonding in Biological Tyrosinate-bound Iron Centers INTRODUCTION Future Work: Table 1. Synthesis of 1 (2-Aminophenol). Finish.
Ian Martin, Cynthia Gerber, Lea Nyiranshuti, and Dr. Roy Planalp*. Department of Chemistry, University of New Hampshire. Summary and Conclusions Acknowledgements.
Trans-[Pt(OH) 2 (ox)(R,R-chxn)] and the fight against cancer: a common monomer of Oxaliplatin Ian Smith, Lea Nyiranshuti, Luke Fulton, Roy Planalp
A Computational Study of RNA Structure and Dynamics Rhiannon Jacobs and Dr. Harish Vashisth Department of Chemical Engineering, University of New Hampshire,
A Computational Study of RNA Structure and Dynamics Rhiannon Jacobs and Harish Vashisth Department of Chemical Engineering, University of New Hampshire,
Towards the Synthesis of Pt(IV) Analogs of Oxaliplatin Anyu Gao, Lea Nyiranshuti and Dr. Roy Planalp Parsons Hall, 23 Academic.
MELISSA J. GELWICKS Development of Functionalized Semipermeable Membranes for Microfluidic Separations.
Reaction Pathways The goal being to synthesize FeL 2 HCl, there are many pathways that can be taken. The figure below represents the various attempts that.
Synthesis of Carbon Quantum Dots and Their Use as Photosensitizers Anthony J. Lemieux, Christine A. Caputo Department of Chemistry, University of New Hampshire,
Stabilizing Transition Metal-Arylthiolate Bonds via Secondary Sphere Hydrogen Bonding Ryan L. Hall and Samuel Pazicni. Department of Chemistry, University.
Effect of Reaction Conditions on Oxidation of Anthracene with a Vanadium Catalyst Acknowledgments Special thanks to Lea Nyiranshuti as well as Luke Fulton,
UNH Chemistry 775: Synthesis of Two Tetrahalodimolybdenum(II) Complexes Acknowledgments Thanks to the UNH Chemistry Department for providing funding for.
Olivia F. Hurst, Dana Warwick, Dr. Roslyn Theisen , and Dr
Results and Discussion
Spectral and Electrochemical Characteristics of Silver Complexes and their Potential Metal-to-Charge Transfer Capabilities Matthew Reuter, Roy Planalp,
Synthesis, Characterization, and Computational Modeling of [Co(acacen)L2]+, an Inhibitor of Zinc Finger Proteins Thomas Williams, Matthew Currier, Timothy.
Sean Pierre-Louis, Marc Boudreau, Bill Butler
Synthesis and Characterization of Porphyrin Nanoparticles to model Heme Protein Iron Coordination Graham Beaton , Samuel Pazicni
Trabajo Final de Máster Submitted by Hazem Essam Elsayed Okda
An Introduction to Medicinal Chemistry 3/e COMBINATORIAL CHEMISTRY
Jamie Roy, Roy Planalp, Lea Nyiranshuti
University of New Hampshire, Department of Chemistry
Energy Difference (kJ/mol)
Approaching the mechanism of anticancer activity of a copper(II) complex through molecular modelling, docking and dynamic studies. I.N. Zoi1 , A.X. Lygeros1.
A new ligation system for protein conjugation
Synthesis, Characterization, and Computational Modeling of [Co(acacen)L2]+, an Inhibitor of Zinc Finger Proteins1 Timothy J. Tetrault*, Claudia S. Willis,
Joey Mancinelli, Zane Relethford, Roy Planalp
Synthesis and Characterization of Porphyrin Nanoparticles to model Heme Protein Iron Coordination Graham Beaton , Samuel Pazicni
Investigation of the Effect of Ligands on Metal-to-Ligand Charge Transfer Transitions using d10-complexes of Group 11 Elements Evangelos Rossis, Roy Planalp,
Place your Project Logo Here
Formation of 4-nitro-2-acetoxy benzoic acid
SPARTAN COMPUTATIONS OF PINCER LIGANDS
Synthesis and characterization of porphyrin-cored polymer nanoparticles that incorporate hydrogen bonding to model hemes Drew Verrier, Brian Patenaude,
Synthesis and Metal Coordination of Phosphacrown Compounds
Pentacyclo[ ,4.03,8.05,7]non-4-ene: Synthesis, Reactivity, Matrix Isolation Spectroscopy, Calculations, and Physical Study of Reaction Products.
Controlled Synthesis of Single-chain Nanoparticles Under Various Atom Transfer Radical Coupling Conditions Courtney M. Leo, Ashley Hanlon, Elizabeth Bright,
Results and Discussion:
The First Conventional Synthesis of 1-methyl-4-silatranone and
Synthesis of p-xylene diisocyanide and Polymerization
Joey Mancinelli, Justin Cole, Erik Berda
Synthesis and Characterization of a
Joey Mancinelli, Justin Cole, Erik Berda
The Design and Synthesis of DFO Derivatives for PET-Imaging
Preparation of a Ferrofluid
Synthesis of Functionalized BODIPY Dyes for Use as Fluorescent Probes
Presentation transcript:

Synthesis, Characterization, and Formation Constant Studies of Novel Bifunctional Ligands for Sensing Copper, Zinc, and Iron Alexis Kasparian, Lea Nyiranshuti, Feifei Wang, Dr. W. Rudolf Seitz Advisor: Dr. Roy Planalp University of New Hampshire, Parsons Hall, 23 Academic Way, Durham NH Introduction The synthesis of ligands with particular affinities for metal ions allows their use in sensing. In particular, this research group has worked towards the synthesis of ligands with regard to the trace biological ions zinc(II), copper(II), and iron(II). Upon successful synthesis of ligands and determination of their formation constants with the ions, the ligands may be made bifunctional via an acrylamide group for copolymerization with n-isopropylacrylamide (NIPA). The polyNIPAm system also contains sites that allow for addition of fluorophores. 1 The fluorophores enable FRET under certain conditions, which is used for quantitative detection of metal ions. References [1] Yao, S. et al. Analyst , [2] Reddel, J. B.S. Thesis, University of New Hampshire, [3] Planalp, R.P. et al. Biochem. Soc. Trans , Preliminary Computational Results The model ligand was analyzed using Spartan software modeling programs. Energy comparisons of the ligand bound to the various ions were performed to determine the more likely binding results. Two potential isomers of the ligand were hypothesized, assuming a tetradentate binding fashion with the ligand and completion of an octahedral geometry with water molecules (Figure 4). The isomers were then inserted into the equation below (Figure 5). Conclusions and Future Work The preliminary computed results show promise in regards to the specificity of the ligand. Progress has been made towards its synthesis. The model reaction has been run under several different conditions and the products are under analysis. Future work for the research group involves: Continuation of computational modeling to determine the most likely conformers of the ligand Successful ligand synthesis Comparison of its crystal structure, if isolable, to the computed models Titrations of the ligand to determine its pKa Titrations of the ligand with iron(II), copper(II), and zinc(II) to determine formation constants Addition of the ligand onto the polymer delivery system and resultant fluorescent studies with iron(II) concentrations Figure 1. Previously synthesized bifunctional metal-specific ligands containing acrylamido groups for polymerization. 1,2 Link to Current Research To design a sensor selective for iron(II), the previously synthesized tachpyr molecule (FIGURE 3, left) was examined. Tachpyr is known to favor iron over zinc and is cytotoxic to cells, allowing its use as a cancer cell treatment. 3 To produce a molecule with a reversible binding ability for sensing, tachpyr was modified (Figure 3, right). This novel molecule is currently under study. Synthetic routes are being explored and computational modeling is employed to determine how it will interact with the aforementioned metal ions. Figure 3. Tachpyr molecule and subsequent theoretical modification for desired sensor ligand. Current Synthesis Routes and Results One synthesis route was explored (Figure 6), but after several attempts it was determined that the yield of conversion of 2 to 3 was impractical in our experience. The approach of Figure 7 appears more suitable. Figure 8. Model reaction for determination of reaction conditions using 2-aminomethyl pyridine with 1,3-propanediol di-p-tosylate. Figure 6. Original synthesis route. Conversion of 2 to 3 was very low yielding, prompting research into alternate methods for synthesis. Current Synthesis Routes and Results The synthesis of the desired ligand is in progress (Figure 7). We are working to improve the outcome of the amine formation (3) by rigorous exclusion of water and oxygen, which may quench the formation of the necessary organocerium complex. The displayed plans do not include the acrylamido group for polymerization. Its synthesis could be accomplished with the introduction of a nitro group on the center carbon of 1,3- propanediol di-p-tosylate, which can then be converted to an amine for reaction to the resulting acrylamido moiety. Figure 2. General setup of polymer for delivery and action of the ligand. Figure 7. Alternate synthesis route, in progress. Figure 5. Equation used to compare binding of the model ligand with different metal ions. The reactions assumed aqueous media and 6-fold binding in an octahedral fashion. Table 1. Calculated results of relative energies using the equation in Figure 5. Figure 4. Isomers A and B of the ligand, shown complexed to a metal ion center. Two water molecules complete the octahedral geometry. To determine the most practical way for the addition of two amines onto a single di-tosylate, a model reaction is under exploration. This reaction (Figure 8) involves the use of 2- aminomethylpyridine, a readily available reagent. It is being reacted under different conditions to determine which method is most efficient for completion of reaction. The results of the computations show that for Cases 1-3 the equilibrium will prefer the left side of the equation, with iron(II) bound to the ligand. Case 4 shows preference for copper binding with the ligand, but since Cu II complexes tend to undergo Jahn-Teller distortion, further parameters need to be applied to determine copper’s true complex with the ligand and resultant energies. Total Energy Differences, right side - left side [Hartree][kcal/mol] Case Case Case Case Isomer AIsomer B Acknowledgements Thank you to the UNH Department of Chemistry for their continuing support. My sincerest thanks to Dr. Planalp and Lea Nyiranshuti of UNH for their guidance, and Dr. Richard Johnson for his introduction to computational models. This project and presentation was funded by the UNH URA and Craig West Undergraduate Awards, and we thank all those who have helped to keep these programs going.