STM/S Imaging Studies in the Vortex State Anjan K. Gupta Physics Department, IIT, Kanpur (Tutorial, IVW10 at TIFR)

Slides:



Advertisements
Similar presentations
Scanning tunnelling spectroscopy
Advertisements

SRC Review – October 4 th, 2005 © 2005 M.Y. Simmons Single atom imaging and manipulation Don Eigler (IBM), Science 262, 218 (1993) Silicon (100) surface.
Probing Superconductors using Point Contact Andreev Reflection Pratap Raychaudhuri Tata Institute of Fundamental Research Mumbai Collaborators: Gap anisotropy.
Scanning Probe Microscopy
SDW Induced Charge Stripe Structure in FeTe
Franco-Israel Conference on Nanocharacterization Surface Electronic Characterization with SPM Sidney Cohen This presentation will probably involve audience.
Oda Migaku STM/STS studies on the inhomogeneous PG, electronic charge order and effective SC gap of high-T c cuprate Bi 2 Sr 2 CaCu 2 O 8+  NDSN2009 Nagoya.
Multiple phase transformations in weakly pinned vortex matter S. Ramakrishnan and A. K. Grover S. Ramakrishnan and A. K. Grover Department of Condensed.
High-T c Superconductor Surface State 15/20/2015 Group member: 陈玉琴、郭亚光、贾晓萌、刘俊义、刘晓雪 彭星星、王建力、王鹏捷 ★ 、喻佳兵 ★ :Group Leader & Speaker.
Scanning Tunneling Spectrosopy of single magnetic adatoms and complexes at surfaces Peter Wahl Max-Planck-Institute for Solid State Research Stuttgart.
Shot Noise and conductance spectroscopy on a single molecule junction Oren Tal Michael Krieger, Rik Hortensius, Bas Leerink Robert Thijssen, Darko Djukic.
Insights into quantum matter from new experiments Detecting new many body states will require: Atomic scale resolution of magnetic fields Measuring and.
Pushing the limits of IR …an update of new possibilities in CLS spectroscopy Ferenc Borondics CAP Meeting 2011, St. John’s, NL.
Thermal Radiation Scanning Tunneling Microscopy Yannick De Wilde, Florian Formanek, Remi Carminati, Boris Gralak, Paul-Arthur Lemoine, Karl Joulain, Jean-Philippe.
ECRYS 2011 Confinement-Induced Vortex Phases in Superconductors Institut des Nanosciences de Paris INSP, CNRS, Université Pierre et Marie Curie Paris 6,
Probing electronic interactions using electron tunneling
Wittenberg 2: Tunneling Spectroscopy
Theory of the Quantum Mirage*
Theory of spin-polarized STM and AFM: A tutorial presentation C. Julian Chen December 12, 2006 Institut für Angewandte Physik und Zentrum für Mikrostrukturforschung.
Muhammad Khurram Farooqi (CIIT/FA11/MSPHY/006/LHR) Department of Physics CIIT Lahore 1 Scanning Probe Microscopy Submitted by Report ( Submitted to) Dr.
STM / AFM Images Explanations from
Magnetic Data Storage. 5 nm Optimum Hard Disk Reading Head.
Chien-Chang Chen (Nai-Chang Yeh’s group). IMAGE FROM AN STM Iron atoms on the surface of Cu(111) Image from an STM.
Scanning Tunneling Microscopy and Atomic Force Microscopy
Spintronics and Graphene  Spin Valves and Giant Magnetoresistance  Graphene spin valves  Coherent spin valves with graphene.
Barrier dynamics effects on electron transmission through molecular wires and layers Inelastic tunneling spectroscopy ?Using frozen configurations in transmission.
Methods and Tehniques in Surface Science Prof. Dumitru LUCA “Alexandru Ion Cuza” University, Iasi, Romania.
Atomic-scale Engeered Spins at a Surface
UIC Atomic Force Microscopy (AFM) Stephen Fahey Ph.D. Advisor: Professor Sivananthan October 16, 2009.
Quantum theory of vortices and quasiparticles in d-wave superconductors.
Revisit of the Growth of Co on Cu(111) Introduction  Cobalt thin films on Cu(111) are model systems for magnetic investigations and their structures and.
Dirac fermions in Graphite and Graphene Igor Lukyanchuk Amiens University I. Lukyanchuk, Y. Kopelevich et al. - Phys. Rev. Lett. 93, (2004) - Phys.
Magnetization dynamics
Complex Epitaxial Oxides: Synthesis and Scanning Probe Microscopy Goutam Sheet, 1 Udai Raj Singh, 2 Anjan K. Gupta, 2 Ho Won Jang, 3 Chang-Beom Eom 3 and.
Lecture 3. Granular superconductors and Josephson Junction arrays Plan of the Lecture 1). Superconductivity in a single grain 2) Granular superconductors:
Superconducting vortex avalanches D. Shantsev Åge A. F. Olsen, D. Denisov, V. Yurchenko, Y. M. Galperin, T. H. Johansen AMCS (COMPLEX) group Department.
Confinement of spin diffusion to single molecular layers in layered organic conductor crystals András Jánossy 1 Ágnes Antal 1 Titusz Fehér 1 Richard Gaál.
Lectures 24: Scanning Tunneling Microscopy w 12 =1 w 12 ~exp(-k * d) full transmission for almost completely open channels blocked channels.
(b) Constant height mode Measure the tunneling current while scanning on a given, smooth x-y-z contour. The z-position (output of feedback loop) is measured.
5 kV  = 0.5 nm Atomic resolution TEM image EBPG (Electron beam pattern generator) 100 kV  = 0.12 nm.
Elshan Akhadov Spin Electronics QuarkNet, June 28, 2002 Peng Xiong Department of Physics and MARTECH Florida State University.
Magneto-optical imaging of Superconductors Satyajit S.Banerjee Dept of Physics, Indian Institute of Technology, Kanpur, India.
Dendritic Thermo-magnetic Instability in Superconductors Daniel V. Shantsev AMCS group, Department of Physics, UiO Collaboration: D. V. Denisov, A.A.F.Olsen,
 Ferromagnetism  Inhomogenous magnetization  Magnetic vortices  Dynamics  Spin transport Magnetism on the Move US-Spain Workshop on Nanomaterials.
Scanning Tunneling Microscopy on heavy fermion metals S. Wirth, MPI CPfS Dresden Magnetotransport in CeMIn 5 Scanning Tunneling Microscopy on heavy fermion.
Figure 3.1. Schematic showing all major components of an SPM. In this example, feedback is used to move the sensor vertically to maintain a constant signal.
Tunneling Spectroscopy and Vortex Imaging in Boron-doped Diamond
Anisotropic Superconductivity in  -(BDA-TTP) 2 SbF 6 : STM Spectroscopy K. Nomura Department of Physics, Hokkaido University, Japan ECRYS-2008, Cargese.
Competing Orders, Quantum Criticality, Pseudogap & Magnetic Field-Induced Quantum Fluctuations in Cuprate Superconductors Nai-Chang Yeh, California Institute.
1 Disorder and Zeeman Field-driven superconductor-insulator transition Nandini Trivedi The Ohio State University “Exotic Insulating States of Matter”,
Lecture 6: Microscopy II PHYS 430/603 material Laszlo Takacs UMBC Department of Physics.
Peak effect in Superconductors - Experimental aspects G. Ravikumar Technical Physics & Prototype Engineering Division, Bhabha Atomic Research Centre, Mumbai.
Probing of Nanostructured Surfaces at Attosecond Timescales Emma Catton 1 st year PhD student in the Atomic Manipulation Group at NPRL Based in Birmingham.
Spatially resolved quasiparticle tunneling spectroscopic studies of cuprate and iron-based high-temperature superconductors Nai-Chang Yeh, California Institute.
Particle in a “box” : Quantum Dots
2D Topological insulator in HgTe quantum wells Z.D. Kvon Institute of Semiconductor Physics, Novosibirsk, Russia 1. Introduction. HgTe quantum wells. 2.
Theory of the Fano Effect and Quantum Mirage STM Spectroscopy of Magnetic Adatoms on Metallic Surfaces.
Why Make Holes in Superconductors? Saturday Morning Physics December 6, 2003 Dr. Sa-Lin Cheng Bernstein.
A. Orozco, E. Kwan, A. Dhirani Department of Chemistry, University of Toronto SCANNING TUNNELING MICROSCOPY: A NEW CHM 326 LAB.
Spatially resolved quasiparticle tunneling spectroscopic studies of cuprate and iron-based high-temperature superconductors Nai-Chang Yeh, California Institute.
Tunneling PH671 - Transport. Tunneling (MIM) Scanning tunneling microscopy (STM)
DIRECT OBSERVATION OF JOSEPHSON VORTICES
Charge-Density-Wave nanowires Erwin Slot Mark Holst Herre van der Zant Sergei Zaitsev-Zotov Sergei Artemenko Robert Thorne Molecular Electronics and Devices.
Igor Lukyanchuk Amiens University
Scanning Tunneling Microscopy Zachary Barnett Solid State II Dr. Elbio Dagotto April 22, 2008.
Molecular spectroscopy and reaction dynamics Group III
STM Conference Talk: Dirk Sander
Scanning Probe Microscope
High Temperature Superconductivity
Presentation transcript:

STM/S Imaging Studies in the Vortex State Anjan K. Gupta Physics Department, IIT, Kanpur (Tutorial, IVW10 at TIFR)

Quantum Tunneling z=d Tunneling Current So, For typical Metals Ref.: J. G. Simmons, J. Appl. Phys. 34, 1793 (1963) I increases ~ 10 times if d decreases by 1

Scanning Tunneling Microscope A Fresh Cleaved HOPG (Graphite)

STM Schematics Fine XYZ positioner The coarse Approach Sample & Tip holder Vibration isolation Electronics & Software The coarse Approach ~0.25  m step < 0.5  m 5 mm Fine XYZ positioner 0.1 sample Sample holder

The First STM 5 cm Ref.: Binnig, Rohrer, Gerber, and Weibel, APL50, 178 (1982)

STM at IITK IITK HOPG in ambience

Tunneling Current Sample (+ve bias) N sam eV kBTkBT Tip  N ti p filled empty  Tip d Sample V

Topography : k ~ 1 Å -1 Spectroscopy : ~ N sam (eV) (T ~ 0) Ref.: J. Bardeen, Phys. Rev. Lett. 6, 57 (1961) Tersoff & Hamann, Phys. Rev. B 31, 805 (1985) Sample (+ve bias) N sam eV kBTkBT Tip  NtNt filled empty  Tunneling Current w~kT eV

Tunneling Spectrum Energy Resolution ~ 29  eV Features in electronic DOS within  E << E F (~  can be resolved extremely well with an energy resolution ~ kT Example: BCS gap in a Superconductor Superconductor Normal Metal insulator Vs. Sandwich Junction Tip d Sample STM Junction STS

2) ac-Modulation: + Tip Sample Amp Z-Feedback Lock-In v 0 sin  t Scanning Tunneling Spectroscopy 1) Measure I(V) at each point and differentiate Impractical: 128x128 image takes >2hrs. and >16MB memory (0.5s/spec. & 1kB for 512 of 2 bytes points) Band-widths: Scanning speed: Sampling time >  lock-in > 1/  ~80 s./im (  = 2kHz,  lock-in = 3msec, S.T. = 5msec., 128x128 )

STS: Vortex Imaging Ref.: H. F. Hess et.al., Phys. Rev. Lett. 62, 214–216 (1989) 2H-NbSe 2 at T = 1.8K and 1 Tesla, dI/dV at 1.3mV T c =7.2K,  =1meV,  || =8nm,  || =30 200G, 350nm

LDOS in Vortex Core Ref.: F. Gygi and M. Schluter, PRB41, 822 (1990); ibid, PRB43, 7609 (1991) B-dG eqns. in vortex core: For lowest E Bound (E  0 ) States LDOS [N(E)] (Flat near E F )

STS vs. Theory Anisotropy of periodic potential and magnetic field F. Gygi and M. Schluter, PRB43, 7609 (1991) 200G, 350nm STS Theory Anisotropy 150nm H=500G, 1.3K 0mV Th 0.5mV Th

Vortex Imaging (low T c ) Ref.:M. R. Eskildsen, PRL89, (2002) No bound states ! 0.05T0.2T V 0 /V  MgB 2 4.2K 1.5 T 290nm 150nm Ref.: Y. De Wilde PRL78, 4273 (1997) LuNi 2 B 2 C (4.2 K) Ref.: H. Sakata, PRL84, 1583 (2000) YNi 2 B 2 C (4.2 K) 0.5 T || c Au covered for passivation Ref.: G. J. C. van Baarle, APL82, 1081 (2003) Mo 2.7 Ge 700nm 0.5T 680 nm

Vortex Imaging (high T c ) Ref.: I. Maggio-Aprile, PRL75, 2754 (1995) YBCO K, 6T (field cooled) Bi 2 Sr 2 CaCu 2 O 8 Ref.: S. H. Pan, PRL85, 1536 (2000) 7.25 T, 4.2K, 7mV 0T, 4.2K, 7mV

Ref.: S. Behler, PRL72, 1750 (1994) Vortex Pinning Topography STS, 0.5T,0.5mV STS, 0.1T,0.5mV STS, 4mT,0.5mV Ion irradiated (Au 24+ ) NbSe 2 at 4.2K Topography & tunneling conductance images at various fields

Vortex Pinning Ref.: A. M. Troyanovski, Nature399, 665, 1999 NbSe 2, 0.6T, 4.2K, ion (6GeV Pb) irradiated NbSe 2, 0.6T, 4.2K, pristine

Magnetic Vortex: SP-STM Xth International Vortex State Studies Workshop STM/S Imaging Studies in the Vortex State Ref.: A. Wachowiak, Science 298, 577. Fe island on W (110) Cr coated W tip, 10K

Thank You !