C&O 355 Mathematical Programming Fall 2010 Lecture 21 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA A.

Slides:



Advertisements
Similar presentations
Introduction to Algorithms 6.046J/18.401J/SMA5503
Advertisements

The Primal-Dual Method: Steiner Forest TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA A A AA A A A AA A A.
C&O 355 Lecture 22 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A A A A A A A A A.
Beyond Convexity – Submodularity in Machine Learning
C&O 355 Lecture 6 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A.
C&O 355 Mathematical Programming Fall 2010 Lecture 9
C&O 355 Lecture 5 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A.
C&O 355 Lecture 23 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A A A A A A A A A.
1 LP Duality Lecture 13: Feb Min-Max Theorems In bipartite graph, Maximum matching = Minimum Vertex Cover In every graph, Maximum Flow = Minimum.
1 Matching Polytope x1 x2 x3 Lecture 12: Feb 22 x1 x2 x3.
C&O 355 Mathematical Programming Fall 2010 Lecture 22 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A A.
C&O 355 Lecture 4 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A.
C&O 355 Mathematical Programming Fall 2010 Lecture 20 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA A.
C&O 355 Mathematical Programming Fall 2010 Lecture 15 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA A.
C&O 355 Lecture 20 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A A A A A A A A A.
C&O 355 Lecture 12 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A A A A A A A A A.
How should we define corner points? Under any reasonable definition, point x should be considered a corner point x What is a corner point?
Basic Feasible Solutions: Recap MS&E 211. WILL FOLLOW A CELEBRATED INTELLECTUAL TEACHING TRADITION.
Graph Sparsifiers by Edge-Connectivity and Random Spanning Trees Nick Harvey University of Waterloo Department of Combinatorics and Optimization Joint.
Graph Sparsifiers by Edge-Connectivity and Random Spanning Trees Nick Harvey U. Waterloo C&O Joint work with Isaac Fung TexPoint fonts used in EMF. Read.
Totally Unimodular Matrices Lecture 11: Feb 23 Simplex Algorithm Elliposid Algorithm.
1 Introduction to Linear and Integer Programming Lecture 9: Feb 14.
Introduction to Linear and Integer Programming Lecture 7: Feb 1.
Approximation Algorithm: Iterative Rounding Lecture 15: March 9.
1 Spanning Tree Polytope x1 x2 x3 Lecture 11: Feb 21.
Approximation Algorithms: Bristol Summer School 2008 Seffi Naor Computer Science Dept. Technion Haifa, Israel TexPoint fonts used in EMF. Read the TexPoint.
Computational aspects of stability in weighted voting games Edith Elkind (NTU, Singapore) Based on joint work with Leslie Ann Goldberg, Paul W. Goldberg,
C&O 355 Mathematical Programming Fall 2010 Lecture 17 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA A.
C&O 355 Mathematical Programming Fall 2010 Lecture 1 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA A A.
C&O 355 Lecture 2 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A.
Minimal Spanning Trees What is a minimal spanning tree (MST) and how to find one.
C&O 355 Mathematical Programming Fall 2010 Lecture 2 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA A A.
C&O 355 Mathematical Programming Fall 2010 Lecture 19 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA A.
Approximating Minimum Bounded Degree Spanning Tree (MBDST) Mohit Singh and Lap Chi Lau “Approximating Minimum Bounded DegreeApproximating Minimum Bounded.
C&O 355 Mathematical Programming Fall 2010 Lecture 4 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A A.
Approximation Algorithms Department of Mathematics and Computer Science Drexel University.
Theory of Computing Lecture 13 MAS 714 Hartmut Klauck.
C&O 355 Mathematical Programming Fall 2010 Lecture 18 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A A.
TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA A A A A A A A A Image:
Chap 10. Integer Prog. Formulations
C&O 355 Mathematical Programming Fall 2010 Lecture 8 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A A.
C&O 355 Mathematical Programming Fall 2010 Lecture 16 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A A.
C&O 355 Mathematical Programming Fall 2010 Lecture 5 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA A A.
Linear Programming Maximize Subject to Worst case polynomial time algorithms for linear programming 1.The ellipsoid algorithm (Khachian, 1979) 2.Interior.
Implicit Hitting Set Problems Richard M. Karp Erick Moreno Centeno DIMACS 20 th Anniversary.
C&O 355 Lecture 7 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A.
CPSC 536N Sparse Approximations Winter 2013 Lecture 1 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AAAAAAAAAA.
Chapter 2. Optimal Trees and Paths Combinatorial Optimization
C&O 355 Lecture 24 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA A A A A A A A A.
Spanning tree Lecture 4.
Submodular set functions Set function z on V is called submodular if For all A,B µ V: z(A)+z(B) ¸ z(A[B)+z(AÅB) Equivalent diminishing returns characterization:
Review for E&CE Find the minimal cost spanning tree for the graph below (where Values on edges represent the costs). 3 Ans. 18.
C&O 355 Lecture 19 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A A A A A A A A A.
TU/e Algorithms (2IL15) – Lecture 12 1 Linear Programming.
Approximation Algorithms based on linear programming.
TU/e Algorithms (2IL15) – Lecture 12 1 Linear Programming.
TU/e Algorithms (2IL15) – Lecture 8 1 MAXIMUM FLOW (part II)
Linear program Separation Oracle. Rounding We consider a single-machine scheduling problem, and see another way of rounding fractional solutions to integer.
Lap Chi Lau we will only use slides 4 to 19
Topics in Algorithms Lap Chi Lau.
Chapter 5. Optimal Matchings
3.5 Minimum Cuts in Undirected Graphs
Chapter 23 Minimum Spanning Tree
CS 583 Analysis of Algorithms
MA/CSSE 473 Day 33 Student Questions Change to HW 13
Lecture 14 Shortest Path (cont’d) Minimum Spanning Tree
CSE 373: Data Structures and Algorithms
Flow Feasibility Problems
The Greedy Approach Young CS 530 Adv. Algo. Greedy.
Lecture 13 Shortest Path (cont’d) Minimum Spanning Tree
Presentation transcript:

C&O 355 Mathematical Programming Fall 2010 Lecture 21 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA A A A A A A A A

Topics Max Weight Spanning Tree Problem Spanning Tree Polytope Separation Oracle using Min s-t Cuts Warning! The point of this lecture is to do things in an unnecessarily complicated way.

Spanning Tree Let G = (V,E) be a connected graph, n=|V|, m=|E| Edges are weighted: w e 2 R for every e 2 E Def: A set T µ E is a spanning tree if (these are equivalent) – |T|=n-1 and T is acyclic – T is a maximal acyclic subgraph – T is a minimal connected, spanning subgraph

Spanning Tree Let G = (V,E) be a connected graph, n=|V|, m=|E| Edges are weighted: w e 2 R for every e 2 E Def: A set T µ E is a spanning tree if (these are equivalent) – |T|=n-1 and T is acyclic – T is a maximal acyclic subgraph – T is a minimal connected, spanning subgraph

Spanning Tree Let G = (V,E) be a connected graph, n=|V|, m=|E| Edges are weighted: w e 2 R for every e 2 E Def: A set T µ E is a spanning tree if (these are equivalent) – |T|=n-1 and T is acyclic – T is a maximal acyclic subgraph – T is a minimal connected, spanning subgraph Def: T µ E is a max weight spanning tree if it maximizes  e 2 T w e over all spanning trees

A Simple Properties of Trees For any C µ E, let ∙ (C) = # connected components in (V,C) Examples: ∙ (E)=1 and ∙ ( ; )=n Claim: Suppose T is a spanning tree. For every C µ E, |T Å C| · n- ∙ (C). Proof: Let the connected components of (V,C) be (V 1,C 1 ), (V 2,C 2 ),.... So V = [ i V i and C = [ i C i. Since T Å C i is acyclic, |T Å C i | · |V i |-1. So ¥

Characteristic Vectors Notation: We consider vectors x assigning real numbers to the edges in E. We write this as x 2 R E. Notation: For C µ E, let x(C) =  e 2 C x e. Examples: – the edge weights are w 2 R E – For T µ E, the characteristic vector of T is x 2 R E where For any C µ E, x(C) = |T Å C| · n- ∙ (C). This is a linear inequality in x:  e 2 C x e · n- ∙ (C)

Spanning Tree Polytope Since we know all these linear inequalities, why not assemble them into a polyhedron? Let Note: – P ST is a polyhedron, because x(E) and x(C) are linear functions of x – P ST is a polytope, because x e = x({e}) · 1, so P ST is bounded – If x is the characteristic vector of a spanning tree, then x 2 P ST P ST =

The Main Theorems Theorem 1: The LP max { w T x : x 2 P ST } can be solved in polynomial time. (In fact, we’ll do this by the ellipsoid method!) Theorem 2: [Edmonds ‘71] The extreme points of P ST are precisely the characteristic vectors of spanning trees of G. Corollary: A max weight spanning tree can be found in polynomial time. Proof: Solve the LP and find an extreme point x. x is the characteristic vector of a tree T of weight w T x. Since w T x ¸ w T y for any other extreme point y, it follows that T is a max weight spanning tree. ¥

“Polynomial Time” There are many algorithms for finding maximum weight spanning trees Our algorithm has running time something like O(m 12 ) Hopelessly impractical! But illustrates important ideas. NameRunning Time Prim’s AlgorithmO(m log n) Kruskal’s AlgorithmO(m log n)...with fancy data structuresO(m + n log n)...even fancier data structuresO(m ® (m,n)) Karger-Klein-Tarjan AlgorithmO(m) (randomized) Pettie-Ramachandaran AlgorithmOptimal determistic alg, but runtime is unknown

Ellipsoid Method for Solving LPs (from Lecture 8) Ellipsoid method can find a feasible point in P i.e., it can solve a system of inequalities But we want to optimize, i.e., solve max { w T x : x 2 P } One approach: Binary search for optimal value – Suppose we know optimal value is in interval [L,U] – Add a new constraint w T x ¸ (L+U)/2 – If LP still feasible, replace L with (L+U)/2 and repeat – If LP not feasible, replace U with (L+U)/2 and repeat P w T x = L w T x = U w T x ¸ (L+U)/2

Applying the Ellipsoid Method By binary search, we need to decide feasibility of Main obstacle: Huge number of constraints! (2 m ) Recall: Ellipsoid method works for any convex set P, as long as you can give a separation oracle. P ST = Is z 2 P? If not, find a vector a s.t. a T x<a T z 8 x 2 P Separation Oracle

Applying the Ellipsoid Method By binary search, we need to decide feasibility of Main obstacle: Huge number of constraints! (2 m ) Recall: Ellipsoid method works for any convex set P, as long as you can give a separation oracle. How quickly can we test these constraints? We’ll show: This can be done in time polynomial in n. Is z 2 P? If not, find a violated constraint. Separation Oracle P ST =

Ellipsoid method inside Ellipsoid method Minimum Spanning Tree Problem Minimum S-T Cut Problem Solve by Ellipsoid Method Separation oracle uses… Solve by Ellipsoid Method! Everything runs in polynomial time!

Separation Oracle: Game Plan We have graph G=(V,E) and a point z 2 R E We construct digraph D=(N,A) with capacities c 2 R A If s-t min cut in D is: – Small: this shows that z violates a constraint of P – Large: this shows that z is feasible for P

Construction of D Nodes of D: N = V [ {s,t} [ { u e : e 2 E } Arcs of D: – Arc (s,u e ) of capacity z e for every edge e 2 E – Arc (v,t) of capacity 1 for every node v 2 V – Infinite capacity arcs (u {v,w},v) and (u {v,w},w) for all {v,w} 2 E Edge a z a = 0.6 Edge c, z c = 0.8 Edge b, z b = 0.7 G=(V,E) s t uaua ubub ucuc udud 1 1 Edge d, z d = D=(N,A)

Construction of D Lemma: z is feasible, every s-t cut has capacity ¸ n (except for the cut with only black edges). Edge a z a = 0.6 Edge c, z c = 0.8 Edge b, z b = 0.7 G=(V,E) s t uaua ubub ucuc udud 1 1 Edge d, z d = D=(N,A)

Construction of D Lemma: z is feasible, every s-t cut has capacity ¸ n (except for the cut with only black edges). Example: – z(C) = 2.1 > n- ∙ (C) = 2, so z is infeasible. – The s-t cut ± + (U) in D has capacity 3.9 < n = 4. Edge a z a = 0.6 Edge c, z c = 0.8 Edge b, z b = 0.7 G=(V,E) s t uaua ubub ucuc udud 1 1 Edge d, z d = D=(N,A) U

Separation Oracle Summary Input: G=(V,E) and z 2 R E Construct the graph D=(N,A) and arc capacities For each v 2 V – Temporarily add an infinity capacity arc (s,v) – Compute the s-t min cut value q (by the Ellipsoid Method) – If q<n We obtain a set S µ V s.t. z(E[S]) > |S|-1 Halt: return this violated constraint – Remove the temporary arc End for Halt: z is feasible

Summary Some combinatorial objects are described by LPs of exponential size Even if an LP has exponential size, the ellipsoid method might be able to solve it “efficiently”, if a separation oracle can be designed The separation oracle might use ellipsoid method too Ellipsoid method gives impractical algorithms, but these can be a “proof of concept” for realistic algorithms