C HAPTER 8 Section 8.1 Part 2 – The Binomial Distribution.

Slides:



Advertisements
Similar presentations
AP Statistics 51 Days until the AP Exam
Advertisements

Chapter 6: Random Variables
Chapter 8: Binomial and Geometric Distributions
QBM117 Business Statistics Probability Distributions Binomial Distribution 1.
CHAPTER 13: Binomial Distributions
+ The Practice of Statistics, 4 th edition – For AP* STARNES, YATES, MOORE Chapter 6: Random Variables Section 6.3 Binomial and Geometric Random Variables.
Binomial probability model describes the number of successes in a specified number of trials. You need: * 2 parameters (success, failure) * Number of trials,
AP Statistics: Section 8.1B Normal Approx. to a Binomial Dist.
+ Chapter 6: Random Variables Section 6.3 Binomial and Geometric Random Variables.
Section 8.1 Binomial Distributions
Chapter 6: Random Variables
CHAPTER 6 Random Variables
Chapter 5 Sampling Distributions
AP STATISTICS LESSON 8 – 1 ( DAY 2 ) THE BINOMIAL DISTRIBUTION (BINOMIAL FORMULAS)
Each child born to a particular set of parents has probability of 0.25 having blood type O. Suppose these parents have 5 children. Let X = number of children.
5.5 Distributions for Counts  Binomial Distributions for Sample Counts  Finding Binomial Probabilities  Binomial Mean and Standard Deviation  Binomial.
AP Statistics: Section 8.1B Normal Approx. to a Binomial Dist.
+ Section 6.3 Binomial and Geometric Random Variables After this section, you should be able to… DETERMINE whether the conditions for a binomial setting.
Warm-up Grab a die and roll it 10 times and record how many times you roll a 5. Repeat this 7 times and record results. This time roll the die until you.
Section Binomial Distributions AP Statistics January 12, 2009 CASA.
Binomial Formulas Target Goal: I can calculate the mean and standard deviation of a binomial function. 6.3b h.w: pg 404: 75, 77,
The Practice of Statistics, 5th Edition Starnes, Tabor, Yates, Moore Bedford Freeman Worth Publishers CHAPTER 6 Random Variables 6.3 Binomial and Geometric.
6.2 Homework Questions.
There are 4 runners on the New High School team
+ The Practice of Statistics, 4 th edition – For AP* STARNES, YATES, MOORE Chapter 6: Random Variables Section 6.3 Day 1 Binomial and Geometric Random.
+ The Practice of Statistics, 4 th edition – For AP* STARNES, YATES, MOORE Chapter 6: Random Variables Section 6.3 Binomial and Geometric Random Variables.
8.1 The Binomial Distribution
The Practice of Statistics, 5th Edition Starnes, Tabor, Yates, Moore Bedford Freeman Worth Publishers CHAPTER 6 Random Variables 6.3 Binomial and Geometric.
There are 4 runners on the New High School team. The team is planning to participate in a race in which each runner runs a mile. The team time is the sum.
P. 403 – 404 #71 – 73, 75 – 78, 80, 82, 84 #72B: Binary? Yes – Success is a person is left-handed. I: Independent? Yes, since students are selected randomly,
Section Binomial Distributions For a situation to be considered a binomial setting, it must satisfy the following conditions: 1)Experiment is repeated.
Section 8.1 Binomial Distributions AP Statistics.
+ Binomial and Geometric Random Variables Textbook Section 6.3.
+ The Practice of Statistics, 4 th edition – For AP* STARNES, YATES, MOORE Chapter 6: Random Variables Section 6.3 Binomial and Geometric Random Variables.
6.3 Binomial and Geometric Random Variables
Each child born to a particular set of parents has probability of 0
CHAPTER 6 Random Variables
CHAPTER 6 Random Variables
Binomial and Geometric Random Variables
Section Binomial Distributions
Section 8.1 Binomial Distributions
Chapter 5 Sampling Distributions
Chapter 6: Random Variables
Section Binomial Distributions
Chapter 5 Sampling Distributions
Chapter 5 Sampling Distributions
Chapter 6: Random Variables
CHAPTER 6 Random Variables
Chapter 5 Sampling Distributions
Chapter 6: Random Variables
Chapter 6: Random Variables
Binomial & Geometric Random Variables
6.3: Binomial and Geometric Random Variables
Section Binomial Distributions
Chapter 5 Sampling Distributions
Chapter 6: Random Variables
CHAPTER 6 Random Variables
Chapter 6: Random Variables
Chapter 6: Random Variables
Chapter 6: Random Variables
Chapter 6: Random Variables
CHAPTER 6 Random Variables
Chapter 6: Random Variables
Chapter 6: Random Variables
Chapter 6: Random Variables
Chapter 6: Random Variables
CHAPTER 6 Random Variables
12/12/ A Binomial Random Variables.
Chapter 6: Random Variables
Chapter 8: Binomial and Geometric Distributions
Presentation transcript:

C HAPTER 8 Section 8.1 Part 2 – The Binomial Distribution

U NDERSTANDING THE B INOMIAL F ORMULA To best understand the formula for a binomial distribution, lets use the example of inheriting blood type with the B (5,.25) distribution. Each child of a particular pair of parents has probability 0.25 of having type O blood. Genetics says that children receive genes from each of their parents independently. If these parents have 5 children, the count X of children with type O blood is a binomial random variable with n = 5 trials and probability p = 0.25 of a success on each trial. In this setting, a child with type O blood is a “success” (S) and a child with another blood type is a “failure” (F). What’s P(X = 2)? P(SSFFF) = (0.25)(0.25)(0.75)(0.75)(0.75) = (0.25) 2 (0.75) 3 = However, there are a number of different arrangements in which 2 out of the 5 children have type O blood: SFSFF SFFSF SFFFS FSSFF FSFSF FSFFS FFSSF FFSFS FFFSS SSFFF SFSFF SFFSF SFFFS FSSFF FSFSF FSFFS FFSSF FFSFS SSFFF FFFSS SFSFF SFFSF SFFFS FSSFF FSFSF FSFFS FFSSF FFSFS SSFFF Verify that in each arrangement, P(X = 2) = (0.25) 2 (0.75) 3 = Therefore, P( X = 2) = 10(0.25) 2 (0.75) 3 =

Note, in the previous example, any one arrangement of 2 S’s and 3 F’s had the same probability. This is true because no matter whatarrangement, we’d multiply together 0.25 twice and 0.75 threetimes.We can generalize this for any setting in which we are interested ink successes in n trials. That is, Definition: The number of ways of arranging k successes among n observations is given by the binomial coefficient for k = 0, 1, 2, …, n where n ! = n ( n – 1)( n – 2) … (3)(2)(1) and 0! = 1. B INOMIAL C OEFFICIENT This is a combination… “ n choose k ” or n C r in your calculator

The binomial coefficient counts the number ofdifferent ways in which k successes can be arranged among n trials. The binomial probability P ( X = k ) is this count multiplied by the probability of any one specificarrangement of the k successes. If X has the binomial distribution with n trials and probability p of success on each trial, the possible values of X are 0, 1, 2, …, n. If k is any one of these values, Binomial Probability Probability of n-k failures Number of arrangements of k successes Probability of k successes B INOMIAL P ROBABILITY

E XAMPLE 8.10 – D EFECTIVE S WITCHES Would need to write this on the AP exam

B INOMIAL M EAN AND S TANDARD D EVIATION Note- these short formulas are only good for binomial distributions If a count X has the binomial distribution with number of trials n and probability of success p, the mean and standard deviation of X are Mean and Standard Deviation of a Binomial Random Variable

E XAMPLE 8.11 – B AD S WITCHES

T HE N ORMAL A PPROXIMATION TO B INOMIAL D ISTRIBUTIONS As the number of trials, n, increases, the formula for finding binomial probabilities becomes impractical. Another alternative besides using a calculator is to use the normal distribution properties. We can do this because as the number of trials, n, gets larger, the binomial distribution gets close to a normal distribution.

Suppose that X has the binomial distribution with n trials and success probability p. When n is large, the distribution of X is approximately Normal with mean and standard deviation As a rule of thumb, we will use the Normal approximation when n is so large that np ≥ 10 and n (1 – p ) ≥ 10. That is, the expected number of successes and failures are both at least 10. Suppose that X has the binomial distribution with n trials and success probability p. When n is large, the distribution of X is approximately Normal with mean and standard deviation As a rule of thumb, we will use the Normal approximation when n is so large that np ≥ 10 and n (1 – p ) ≥ 10. That is, the expected number of successes and failures are both at least 10. Normal Approximation for Binomial Distributions Be sure to check this before using the normal approx. for binomial distributions!!

E XAMPLE 8.12 – A TTITUDES T OWARDS S HOPPING Sample surveys show that fewer people enjoy shopping than in the past. A survey asked a nationwide random sample of 2500 adults if they agreed or disagreed that “I like buying new clothes, but shopping is often frustrating and time-consuming.” Suppose that exactly 60% of all adult US residents would say “Agree” if asked the same question. Let X = the number in the sample who agree. Without using the calculator function, estimate the probability that 1520 or more of the sample agree. Step 1: Verify that X is approximately a binomial random variable. B (binary?) : Success = agree, Failure = don’t agree I (independent?) : Because the population of U.S. adults is greater than 25,000 (10x2500) it is reasonable to assume the sampling without replacement condition is met. N (number?) : n = 2500 trials of the chance process S (success?) : The probability of selecting an adult who agrees is p = 0.60

E XAMPLE 8.12 – A TTITUDES T OWARDS S HOPPING

B INOMIAL D ISTRIBUTION WITH THE C ALCULATOR Go through steps 1, 2, & 6 on p to learn how to enter probability distributions in your calculator lists.

Part 2 HW: p #’s 9-11, 13, 15, 16, 20, 27, 28, 32 & 33