From Gravitational Wave Detectors to Completely Positive Maps and Back R. Demkowicz-Dobrzański 1, K. Banaszek 1, J. Kołodyński 1, M. Jarzyna 1, M. Guta.

Slides:



Advertisements
Similar presentations
1 Taoufik AMRI. Overview 3 Chapter II Quantum Protocols Chapter III Quantum States and Propositions Chapter VI Detector of « Schrödingers Cat » States.
Advertisements

APRIL 2010 AARHUS UNIVERSITY Simulation of probed quantum many body systems.
Quantum-limited measurements: One physicist’s crooked path from quantum optics to quantum information I.Introduction II.Squeezed states and optical interferometry.
Adaptive Hough transform for the search of periodic sources P. Astone, S. Frasca, C. Palomba Universita` di Roma “La Sapienza” and INFN Roma Talk outline.
Byron Smith December 11, What is Quantum State Tomography? 2. What is Bayesian Statistics? 1.Conditional Probabilities 2.Bayes’ Rule 3.Frequentist.
The Extraction of Higher Order Field Correlations from a First Order Interferometer Scott Shepard Louisiana Tech University.
Experimental quantum estimation using NMR Diogo de Oliveira Soares Pinto Instituto de Física de São Carlos Universidade de São Paulo
Quantum limits in optical interferometry R. Demkowicz-Dobrzański 1, K. Banaszek 1, J. Kołodyński 1, M. Jarzyna 1, M. Guta 2, K. Macieszczak 1,2, R. Schnabel.
Q UANTUM M ETROLOGY IN R EALISTIC S CENARIOS Janek Kolodynski Faculty of Physics, University of Warsaw, Poland PART I – Q UANTUM M ETROLOGY WITH U NCORRELATED.
Holonomic quantum computation in decoherence-free subspaces Lian-Ao Wu Center for Quantum Information and Quantum Control In collaboration with Polao Zanardi.
Next generation nonclassical light sources for gravitational wave detectors Stefan Ast, Christoph Baune, Jan Gniesmer, Axel Schönbeck, Christina Vollmer,
Displaced-photon counting for coherent optical communication Shuro Izumi.
Quantum enhanced metrology R. Demkowicz-Dobrzański 1, K. Banaszek 1, U. Dorner 2, I. A. Walmsley 2, W. Wasilewski 1, B. Smith 2, J. Lundeen 2, M. Kacprowicz.
Niels Bohr Institute Copenhagen University Eugene PolzikLECTURE 3.
Universal Optical Operations in Quantum Information Processing Wei-Min Zhang ( Physics Dept, NCKU )
Complexity and Disorder at Ultra-Low Temperatures 30th Annual Conference of LANL Center for Nonlinear Studies SantaFe, 2010 June 25 Quantum metrology:
Probing phases and phase transitions in cold atoms using interference experiments. Anatoli Polkovnikov, Boston University Collaboration: Ehud Altman- The.
A quantum optical beam n Classically an optical beam can have well defined amplitude AND phase simultaneously. n Quantum mechanics however imposes an uncertainty.
TeV Particle Astrophysics August 2006 Caltech Australian National University Universitat Hannover/AEI LIGO Scientific Collaboration MIT Corbitt, Goda,
Quantum Noise Measurements at the ANU Sheon Chua, Michael Stefszky, Conor Mow-Lowry, Sheila Dwyer, Ben Buchler, Ping Koy Lam, Daniel Shaddock, and David.
QUEST - Centre for Quantum Engineering and Space-Time Research Single mode squeezing for Interferometry beyond shot noise Bernd Lücke J. Peise, M. Scherer,
R. Demkowicz-Dobrzański 1, J. Kołodyński 1, M. Guta 2 1 Faculty of Physics, Warsaw University, Poland 2 School of Mathematical Sciences, University of.
Manipulating Continuous Variable Photonic Entanglement Martin Plenio Imperial College London Institute for Mathematical Sciences & Department of Physics.
White Light Cavity Ideas and General Sensitivity Limits Haixing Miao Summarizing researches by several LSC groups GWADW 2015, Alaska University of Birmingham.
Quantum metrology: dynamics vs. entang lement I.Introduction II.Ramsey interferometry and cat states III.Quantum and classical resources IV.Quantum information.
Interferometer Topologies and Prepared States of Light – Quantum Noise and Squeezing Convenor: Roman Schnabel.
Purdue University Spring 2014 Prof. Yong P. Chen Lecture 5 (2/3/2014) Slide Introduction to Quantum Optics &
Experimental Characterization of Frequency Dependent Squeezed Light R. Schnabel, S. Chelkowski, H. Vahlbruch, B. Hage, A. Franzen, N. Lastzka, and K. Danzmann.
Jian-Wei Pan Decoherence-free sub-space and quantum error-rejection Jian-Wei Pan Lecture Note 7.
Towards a Universal Count of Resources Used in a General Measurement Saikat Ghosh Department of Physics IIT- Kanpur.
Coherence and Decoherence on fundamental sensitivity limits of quantum probes in metrology and computation R. Demkowicz-Dobrzański 1, K. Banaszek 1, J.
R. Demkowicz-Dobrzański 1, J. Kołodyński 1, K. Banaszek 1, M. Jarzyna 1, M. Guta 2 1 Faculty of Physics, Warsaw University, Poland 2 School of Mathematical.
School of something FACULTY OF OTHER School of Physics and Astronomy FACULTY OF MATHEMATICAL AND PHYSICAL SCIENCES Putting entanglement to work: Super-dense.
LONG-LIVED QUANTUM MEMORY USING NUCLEAR SPINS A. Sinatra, G. Reinaudi, F. Laloë (ENS, Paris) Laboratoire Kastler Brossel A. Dantan, E. Giacobino, M. Pinard.
Copenhagen interpretation Entanglement - qubits 2 quantum coins 2 spins ( spin “up” or spin “down”) Entangled state many qubits: Entangled state:
Quantum computation speed-up limits from quantum metrological precision bounds R. Demkowicz-Dobrzański 1, K. Banaszek 1, J. Kołodyński 1, M. Jarzyna 1,
Using entanglement against noise in quantum metrology
Pinning of Fermionic Occupation Numbers Christian Schilling ETH Zürich in collaboration with M.Christandl, D.Ebler, D.Gross Phys. Rev. Lett. 110,
From Quantum metrological precision bounds to Quantum computation speed-up limits R. Demkowicz-Dobrzański 1, J. Kołodyński 1, M. Jarzyna 1, K. Banaszek.
Laguerre-Gauss Modes for Future Gravitational Wave Detectors Keiko Kokeyama University of Birmingham 2 nd ET Annual Erice, Sicily, Italy
AIC, LSC / Virgo Collaboration Meeting, 2007, LLO Test-mass state preparation and entanglement in laser interferometers Helge Müller-Ebhardt, Henning Rehbein,
Quantum metrology: dynamics vs. entanglement
October 1, 2007 Quantum Optical Sensing: Single Mode, Multi-Mode, and Continuous Time Jeffrey H. Shapiro.
QND, LSC / Virgo Collaboration Meeting, 2007, HannoverH. Müller-Ebhardt Entanglement between test masses Helge Müller-Ebhardt, Henning Rehbein, Kentaro.
Sense and sensitivity:,,robust’’ quantum phase estimation R. Demkowicz-Dobrzański 1, K. Banaszek 1, U. Dorner 2, I. A. Walmsley 2, W. Wasilewski 1, B.
From Quantum metrological precision bounds to Quantum computation speed-up limits R. Demkowicz-Dobrzański, M. Markiewicz Faculty of Physics, University.
Metrology and integrated optics Geoff Pryde Griffith University.
MICRA: status report Exploration of atom-surface forces on a micrometric scale via high sensitivity force measurements with ultracold quantum gases. Objectives:
Role of entanglement in extracting information on quantum processes
Sub-Planck Structure and Weak Measurement
Squeezing in Gravitational Wave Detectors
Improving Measurement Precision with Weak Measurements
Matrix Product States in Quantum Metrology
Quantum-limited measurements:
Fundamental bounds on stability of atomic clocks
M. Stobińska1, F. Töppel2, P. Sekatski3,
the illusion of the Heisenberg scaling
Generation of squeezed states using radiation pressure effects
Detector of “Schrödinger’s Cat” States of Light
Quantum-limited measurements:
Quantum Optics and Macroscopic Quantum Measurement
The Grand Unified Theory of Quantum Metrology
Decoherence at optimal point: beyond the Bloch equations
Search for gravitational waves from binary black hole mergers:
The Grand Unified Theory of Quantum Metrology
Whitening-Rotation Based MIMO Channel Estimation
Quantum computation using two component Bose-Einstein condensates
RF readout scheme to overcome the SQL
Advanced Optical Sensing
INTERNATIONAL CONFERENCE ON QUANTUM INFORMATION
Presentation transcript:

From Gravitational Wave Detectors to Completely Positive Maps and Back R. Demkowicz-Dobrzański 1, K. Banaszek 1, J. Kołodyński 1, M. Jarzyna 1, M. Guta 2, K. Macieszczak 1,2, R. Schnabel 3, M. Fraas 4 1 Faculty of Physics, University of Warsaw, Poland 2 School of Mathematical Sciences, University of Nottingham, United Kingdom 3 Max-Planck-Institut fur Gravitationsphysik, Hannover, Germany 4 Theoretische Physik, ETH Zurich, 8093 Zurich, Switzerland

LIGO – Laser Interferometer Gravitational Wave Observatory Gravitational waves detectors Noise

Shot Noise each photon interfers only with itself

Beating the Shot Noise Precision enhancement thanks to subpoissonian fluctuations of n 1 - n 2 ! ideal case Coherent state Squeezed vacuum lossy case

Looking for the ultimate limits General two-mode N photon state general quantum measurement estimator single parameter quantum channel estimation

The blessing of the Quantum Fisher Information Limit on the optimal N photon strategy: J. Kolodyński, RDD, PRA 82, (2010) S. Knysh, V. Smelyanskiy, G. Durkin, PRA 83, (2011) B. M. Escher, R. L. de Matos Filho, L. Davidovich Nature Phys. 7, 406–411 (2011) RDD, J. Kolodynski, M. Guta, Nature Communications 3, 1063 (2012) Ideal case (Heisenberg limit) no analytical bound until 2010! lossy case

Wind from the East…. Classical/Quantum simulation of a quantum channel K. Matsumoto, arXiv: (2010) Purification of a quantum channel Fujiwara, A., and H. Imai, J. Phys. A: Math. Theor. 41, (2008) Tokyo,Osaka Rio Warsaw Nottingham

Purification idea S E S Fujiwara, A., and H. Imai, J. Phys. A: Math. Theor. 41, (2008) B. M. Escher, R. L. de Matos Filho, L. Davidovich Nature Phys. 7, 406–411 (2011) educated guess needed, but any representation gives an upper bound

Distinguishable particles and uncorrelated noise phase encoding decoherence atomic local dephasing sngle photon loss map– output space: photon survives lost in mode a lost in mode b a b

Purification idea applied to uncorrelated noise Restrict to optimization over Kraus representation of a single channel Fujiwara, A., and H. Imai, J. Phys. A: Math. Theor. 41, (2008) B. M. Escher, R. L. de Matos Filho, L. Davidovich Nature Phys. 7, 406–411 (2011) R. Demkowicz-Dobrzański, J. Kolodyński, M. Guta, Nat. Commun. 3, 1063 (2012 No need for an educated guess, can be cast as a semidefinite program )

Purification idea applied to uncorrelated noise -> No Heisenberg scaling

Classical/Quantum simulation idea = If we find a simulation of the channel…

Classical/Quantum simulation idea Quantum Fisher information is nonincreasing under parameter independent CP maps! We call the simulation classical:

Geometric classical simulation bound RDD, J. Kolodynski, M. Guta, Nature Communications 3, 1063 (2012) Quantum enhancement = constant factor improvement!

Saturating the fundamental bound for lossy interferometry is simple! Weak squezing + simple measurement + simple estimator = optimal strategy! Fundamental bound Simple estimator based on n 1 - n 2 measurement C. Caves, Phys. Rev D 23, 1693 (1981) For strong beams: The same is true for dephasing (also atomic dephasing – spin squeezed states are optimal) S. Huelga, et al. Phys. Rev. Lett 79, 3865 (1997), B. M. Escher, R. L. de Matos Filho, L. Davidovich Nature Phys. 7, 406–411 (2011), D. Ulam-Orgikh and M. Kitagawa, Phys. Rev. A 64, (2001).

GEO600 interferometer at the fundamental quantum bound +10dB squeezed coherent light fundamental bound RDD, K. Banaszek, R. Schnabel, Phys. Rev. A, (R) (2013) The most general quantum strategies could improve the precision additionally by at most 8%

Adaptive schemes, error correction…??? The same bound is valid for the most general adaptive strategies: RDD, L. Maccone, arxiv: (2014) (to appear in Phys. Rev. Lett.) loss, dephasing Better than shot-noise scaling? Effective turning off of decoherence at short nterrgoation times (e.g. perpendicular or non-Markovian dephasing) A. Chin et al Phys. Rev. Lett. 109, (2012) R. Chaves et al.Phys. Rev. Lett. 111, (2013) E. Kessler et.al Phys. Rev. Lett. 112, (2014)

Classical/Quantum simulation bound for the adaptive schemes RDD, L. Maccone arxiv: (2014) (to appear in Phys. Rev. Lett.) Open problem: characterize cases when adaptive schemes offer metrological advantage

Beyond Quantum Cramer-Rao bound the Bayesian approach Cramer-Rao bound approach well justified for „local sensing” (narrow priors) No gurantee of saturability in a single-shot scenario May lead to overoptimistic claims of existence of sub-Heisenberg precision protocols implementaiton of which require impractical prior knowledge Bayesian approach: prior distribution cost function Bayesian Cramer-Rao bound: For unitary models, and Is there a Bayesian strategy saturating the C-R bound?

For decoherence free phase estimaion, flat prior and a simple cost function D. W. Berry and H. M. Wiseman, Phys. Rev. Lett. 85, 5098 (2000). Decoherence-free phase estimation the Bayesian approach The  factor is present any regular prior, (rigorous proof for gaussian priors) M. Jarzyna, R. Demkowicz-Dobrzanski, arxiv: (2014) (to appear in New J. Phys)

Bayes CR asymptotic bound Bayes = Cramer-Rao approach in presence of uncorrelated decoherence M. Jarzyna, RDD, Phys. Rev. Lett. 110, (2013) M. Jarzyna, R.DD, arxiv: (2014) (to appear in New J. Phys) almost optimal performance by entanlging only finite number of particles (e.g matrix product states) Due to decoherence Quantum Fisher information scales at most linearly:

Atomic clocks K. Macieszczak, M. Fraas, RDD New J. Phys. 16, (2014) We look for optimal atomic states, interrogation times, measurements and estimators so that the stationary variance is minimal (Bayesian approach) Stationary condition: In fact we should analyze fundamental limits on Allan variance…. Assumption of lack of correlation of frequnecy fluctuations in subsequent interrogation cycles No rigorous proof of optimality of the presented strategy

Quantum computation and quantum metrology Quantum metrologyQuantum Grover-like algorithms Quadratic quantum enhancement in absence of decoherence Generic loss of quadratic gain due to decoherence??? ?! RDD, M. Markiewicz, in preparation (2014)

Summary Quantum metrological bounds Quantum computing speed-up limits GW detectors sensitivity limitsAtomic-clocks stability limits Review paper: RDD, M.Jarzyna, J. Kolodynski, arxiv: arXiv: arXiv: