7.3 Day One: Volumes by Slicing. 3 3 3 Find the volume of the pyramid: Consider a horizontal slice through the pyramid. s dh The volume of the slice.

Slides:



Advertisements
Similar presentations
7.2: Volumes by Slicing Greg Kelly, Hanford High School, Richland, WashingtonPhoto by Vickie Kelly, 2001 Little Rock Central High School, Little Rock,
Advertisements

Disk and Washer Methods
Greg Kelly, Hanford High School, Richland, WashingtonPhoto by Vickie Kelly, day 2 Disk and Washer Methods Limerick Nuclear Generating Station,
 A k = area of k th rectangle,  f(c k ) – g(c k ) = height,  x k = width. 6.1 Area between two curves.
Volumes – The Disk Method Lesson 7.2. Revolving a Function Consider a function f(x) on the interval [a, b] Now consider revolving that segment of curve.
7.1 Areas Between Curves To find the area: divide the area into n strips of equal width approximate the ith strip by a rectangle with base Δx and height.
Applications of Integration
Volume: The Disk Method
Chapter 6 – Applications of Integration
Volume. Find the volume of the solid formed by revolving the region bounded by the graphs y = x 3 + x + 1, y = 1, and x = 1 about the line x = 2.
7.3 Day One: Volumes by Slicing Greg Kelly, Hanford High School, Richland, WashingtonPhoto by Vickie Kelly, 2001 Little Rock Central High School, Little.
3 3 3 Find the volume of the pyramid: Consider a horizontal slice through the pyramid. s dh The volume of the slice is s 2 dh. If we put zero at the top.
Review: Volumes of Revolution. x y A 45 o wedge is cut from a cylinder of radius 3 as shown. Find the volume of the wedge. You could slice this wedge.
6.2C Volumes by Slicing with Known Cross-Sections.
Volume: The Shell Method Lesson 7.3. Find the volume generated when this shape is revolved about the y axis. We can’t solve for x, so we can’t use a horizontal.
Section 7.2 Solids of Revolution. 1 st Day Solids with Known Cross Sections.
7.3 VOLUMES. Solids with Known Cross Sections If A(x) is the area of a cross section of a solid and A(x) is continuous on [a, b], then the volume of the.
7.3 day 2 Disks, Washers and Shells Limerick Nuclear Generating Station, Pottstown, Pennsylvania.
3 3 3 Find the volume of the pyramid: Consider a horizontal slice through the pyramid. s dh The volume of the slice is s 2 dh. If we put zero at the top.
A honey bee makes several trips from the hive to a flower garden. What is the total distance traveled by the bee? 200ft 100ft 700 feet 7.1 Integrals as.
7.3 Day One: Volumes by Slicing. Volumes by slicing can be found by adding up each slice of the solid as the thickness of the slices gets smaller and.
Inner radius cylinder outer radius thickness of slice.
Solids of Revolution Disk Method
Greg Kelly, Hanford High School, Richland, WashingtonPhoto by Vickie Kelly, Volumes of rotation by Disks Limerick Nuclear Generating Station,
VOLUME BY DISK or disc BY: Nicole Cavalier & Alex Nuss.
Volume: The Disc Method
Greg Kelly, Hanford High School, Richland, WashingtonPhoto by Vickie Kelly, Disk and Washer Methods Limerick Nuclear Generating Station, Pottstown,
Ch 7.3 Volumes Calculus Graphical, Numerical, Algebraic by
Volumes Lesson 6.2.
Disks, Washers and Shells Limerick Nuclear Generating Station, Pottstown, Pennsylvania.
Augustin Louis Cauchy 1789 – 1857 Augustin Louis Cauchy 1789 – 1857 Cauchy pioneered the study of analysis, both real and complex, and the theory of permutation.
Volumes by Slicing. disk Find the Volume of revolution using the disk method washer Find the volume of revolution using the washer method shell Find the.
6.2 - Volumes Roshan. What is Volume? What do we mean by the volume of a solid? How do we know that the volume of a sphere of radius r is 4πr 3 /3 ? How.
Areas and Volumes Gateway Arch, St. Louis, Missouri Greg Kelly, Hanford High School, Richland, Washington Adapted by: Jon Bannon, Siena College Photo by.
Greg Kelly, Hanford High School, Richland, Washington Adapted by: Jon Bannon, Siena College Photo by Vickie Kelly, Day 3 The Shell Method.
Disks, Washers and Shells Limerick Nuclear Generating Station, Pottstown, Pennsylvania Disk Method.
7.3 Day One: Volumes by Slicing Find the volume of the pyramid: Consider a horizontal slice through the pyramid. s dh The volume of the slice is.
Volume: The Shell Method 7.3 Copyright © Cengage Learning. All rights reserved.
6.3 Volumes by Cylindrical Shells. Find the volume of the solid obtained by rotating the region bounded,, and about the y -axis. We can use the washer.
Disk and Washer Methods
Augustin Louis Cauchy 1789 – 1857
Georgia Aquarium, Atlanta
7.3 day 2 Disks, Washers and Shells
Suppose I start with this curve.
Disks, Washers and Shells
Rotational Volumes Using Disks and Washers.
3 Find the volume of the pyramid:
7.2 Areas in the Plane Gateway Arch, St. Louis, Missouri
Disk and Washer Methods
Disks, Washers and Shells
Volume: Disk and Washer Methods
Disk Method for finding Volume
7.3 Day One: Volumes by Slicing
Georgia Aquarium, Atlanta
8.3 day 2 Disk Method LIMERICK GENERATING STATION Limerick Generating Station, located in Limerick Township, Montgomery County, PA, is a two-unit nuclear.
Volumes by Disks and Washers
Warmup 1) 2) 3).
Disks, Washers and Shells
Disk and Washer Methods
Disk and Washer Methods
Georgia Aquarium, Atlanta
8.3 Day One: Volumes by Slicing
7.3 Day One: Volumes by Slicing
6.1 Areas Between Curves To find the area:
Volume: Disk and Washer Methods
Disk and Washer Methods
Volume by Disks and Washers
Disks, Washers and Shells
Disks, Washers and Shells
Presentation transcript:

7.3 Day One: Volumes by Slicing

3 3 3 Find the volume of the pyramid: Consider a horizontal slice through the pyramid. s dh The volume of the slice is s 2 dh. If we put zero at the top of the pyramid and make down the positive direction, then s=h. 0 3 h This correlates with the formula:

Method of Slicing: 1 Find a formula for V ( x ). (Note that I used V ( x ) instead of A(x).) Sketch the solid and a typical cross section. 2 3 Find the limits of integration. 4 Integrate V ( x ) to find volume.

x y A 45 o wedge is cut from a cylinder of radius 3 as shown. Find the volume of the wedge. You could slice this wedge shape several ways, but the simplest cross section is a rectangle. If we let h equal the height of the slice then the volume of the slice is: Since the wedge is cut at a 45 o angle: x h 45 o Since

x y Even though we started with a cylinder,  does not enter the calculation!

Cavalieri’s Theorem: Two solids with equal altitudes and identical parallel cross sections have the same volume. Identical Cross Sections 

Cavalieri’s Theorem: Volume of a SphereVolume of a Sphere 

7.3 Disk and Washer Methods

Suppose I start with this curve. My boss at the ACME Rocket Company has assigned me to build a nose cone in this shape. So I put a piece of wood in a lathe and turn it to a shape to match the curve.

How could we find the volume of the cone? One way would be to cut it into a series of thin slices (flat cylinders) and add their volumes. The volume of each flat cylinder (disk) is: In this case: r= the y value of the function thickness = a small change in x = dx

The volume of each flat cylinder (disk) is: If we add the volumes, we get:

This application of the method of slicing is called the disk method. The shape of the slice is a disk, so we use the formula for the area of a circle to find the volume of the disk. If the shape is rotated about the x-axis, then the formula is: A shape rotated about the y-axis would be:

The region between the curve, and the y -axis is revolved about the y -axis. Find the volume. y x We use a horizontal disk. The thickness is dy. The radius is the x value of the function. volume of disk

The natural draft cooling tower shown at left is about 500 feet high and its shape can be approximated by the graph of this equation revolved about the y-axis: The volume can be calculated using the disk method with a horizontal disk.

The region bounded by and is revolved about the y-axis. Find the volume. The “disk” now has a hole in it, making it a “washer”. If we use a horizontal slice: The volume of the washer is: outer radius inner radius

This application of the method of slicing is called the washer method. The shape of the slice is a circle with a hole in it, so we subtract the area of the inner circle from the area of the outer circle. The washer method formula is:

If the same region is rotated about the line x = 2 : The outer radius is: R The inner radius is: r 

Washer Cross Section The region in the first quadrant enclosed by the y-axis and the graphs of y = cos x and y = sin x is revolved about the x-axis to form a solid. Find its volume.

Washer Cross Section The region in the first quadrant enclosed by the y-axis and the graphs of y = cos x and y = sin x is revolved about the x-axis to form a solid. Find its volume.

7.3 The Shell Method

Find the volume of the region bounded by,, and revolved about the y - axis. We can use the washer method if we split it into two parts: outer radius inner radius thickness of slice cylinder Japanese Spider Crab Georgia Aquarium, Atlanta

If we take a vertical sliceand revolve it about the y-axis we get a cylinder. cross section If we add all of the cylinders together, we can reconstruct the original object. Here is another way we could approach this problem:

cross section The volume of a thin, hollow cylinder is given by: r is the x value of the function. h is the y value of the function. thickness is dx.

cross section If we add all the cylinders from the smallest to the largest: This is called the shell method because we use cylindrical shells.

Find the volume generated when this shape is revolved about the y axis. We can’t solve for x, so we can’t use a horizontal slice directly.

Shell method: If we take a vertical slice and revolve it about the y-axis we get a cylinder.

Note:When entering this into the calculator, be sure to enter the multiplication symbol before the parenthesis.

When the strip is parallel to the axis of rotation, use the shell method. When the strip is perpendicular to the axis of rotation, use the washer method. 

Find the volume of the solid when the region bounded by the curve y =, the x-axis, and the line x = 4 is revolved about the x-axis. Find the volume of the solid using cylindrical shells.

Find the volume of the solid of revolution formed by revolving the region bounded by the graph of and the y axis, 0 ≤ y ≤ 1, about the x-axis. Use the Shell Method.

Find the volume of the solid formed by revolving the region bounded by the graphs y = x 3 + x + 1, y = 1, and x = 1 about the line x = 2.