© 2008 McGraw-Hill Higher Education The Statistical Imagination Chapter 3. Charts and Graphs: A Picture Says a Thousand Words.

Slides:



Advertisements
Similar presentations
Chapter 2 Organizing Data Understandable Statistics Ninth Edition
Advertisements

Chapter 2 Summarizing and Graphing Data
© 2008 McGraw-Hill Higher Education The Statistical Imagination Chapter 4. Measuring Averages.
Copyright © 2013, 2009, and 2007, Pearson Education, Inc. Chapter 2 Exploring Data with Graphs and Numerical Summaries Section 2.2 Graphical Summaries.
Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. Lecture Slides Elementary Statistics Eleventh Edition and the Triola.
Slide 1 Spring, 2005 by Dr. Lianfen Qian Lecture 2 Describing and Visualizing Data 2-1 Overview 2-2 Frequency Distributions 2-3 Visualizing Data.
8.1 Types of Data Displays Remember to Silence Your Cell Phone and Put It In Your Bag!
2- 1 Chapter Two McGraw-Hill/Irwin © 2005 The McGraw-Hill Companies, Inc., All Rights Reserved.
Slide Slide 1 Copyright © 2007 Pearson Education, Inc Publishing as Pearson Addison-Wesley. Lecture Slides Elementary Statistics Tenth Edition and the.
Reading Graphs and Charts are more attractive and easy to understand than tables enable the reader to ‘see’ patterns in the data are easy to use for comparisons.
Frequency Distributions Chapter 3 Homework: 1, 2, 3, 12.
PPA 415 – Research Methods in Public Administration Lecture 2 - Counting and Charting Responses.
Ka-fu Wong © 2003 Chap 2-1 Dr. Ka-fu Wong ECON1003 Analysis of Economic Data.
Frequency Distribution Ibrahim Altubasi, PT, PhD The University of Jordan.
SECTION 12-1 Visual Displays of Data Slide
McGraw-Hill/IrwinCopyright © 2009 by The McGraw-Hill Companies, Inc. All Rights Reserved. Chapter 2 Descriptive Statistics: Tabular and Graphical Methods.
Frequency Distributions and Graphs
Basic Descriptive Statistics Chapter 2. Percentages and Proportions Most used statistics Could say that 927 out of 1,516 people surveyed said that hard.
Welcome to Data Analysis and Interpretation
Chapter 13 Statistics © 2008 Pearson Addison-Wesley. All rights reserved.
Graphic Presentation The Pie Chart The Bar Graph The Statistical Map
STATISTICAL GRAPHS.
© 2008 Pearson Addison-Wesley. All rights reserved Chapter 1 Section 13-1 Visual Displays of Data.
©The McGraw-Hill Companies, Inc. 2008McGraw-Hill/Irwin Describing Data: Frequency Tables, Frequency Distributions, and Graphic Presentation Chapter 2.
2- 1 Chapter Two McGraw-Hill/Irwin © 2006 The McGraw-Hill Companies, Inc., All Rights Reserved.
Copyright © 2012 by Nelson Education Limited.2-1 Chapter 2 Basic Descriptive Statistics: Percentages, Ratios and Rates, Tables, Charts, and Graphs.
8.1 Graphing Data In this chapter, we will study techniques for graphing data. We will see the importance of visually displaying large sets of data so.
Chapter 2 Summarizing and Graphing Data
July, 2000Guang Jin Statistics in Applied Science and Technology Chapter 3 Organizing and Displaying Data.
Copyright © 2015 The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 C H A P T E R T W O Frequency Distributions and Graphs.
Basic Descriptive Statistics Percentages and Proportions Ratios and Rates Frequency Distributions: An Introduction Frequency Distributions for Variables.
Chapter 3: Central Tendency. Central Tendency In general terms, central tendency is a statistical measure that determines a single value that accurately.
Variable  An item of data  Examples: –gender –test scores –weight  Value varies from one observation to another.
LECTURE 5 10 SEPTEMBER 2009 STA291 Fall Itinerary Graphical Techniques for Interval Data (mostly review) Describing the Relationship Between Two.
Smith/Davis (c) 2005 Prentice Hall Chapter Four Basic Statistical Concepts, Frequency Tables, Graphs, Frequency Distributions, and Measures of Central.
Statistical Reasoning for everyday life
 Frequency Distribution is a statistical technique to explore the underlying patterns of raw data.  Preparing frequency distribution tables, we can.
Chapter 2 Organizing Data Understanding Basic Statistics Fifth Edition By Brase and Brase Prepared by Jon Booze.
Chapter 2 Data Presentation Using Descriptive Graphs.
Copyright © 2010, 2007, 2004 Pearson Education, Inc. Lecture Slides Elementary Statistics Eleventh Edition and the Triola Statistics Series by.
Probability & Statistics
1 Copyright © 2005 Brooks/Cole, a division of Thomson Learning, Inc. Chapter 3 Graphical Methods for Describing Data.
Copyright © 2010, 2007, 2004 Pearson Education, Inc. Section 2-2 Frequency Distributions.
When data is collected from a survey or designed experiment, they must be organized into a manageable form. Data that is not organized is referred to as.
Copyright © 2010 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin Chapter 2 Descriptive Statistics: Tabular and Graphical Methods.
McGraw-Hill/ Irwin © The McGraw-Hill Companies, Inc., 2003 All Rights Reserved. 2-1 Chapter Two Describing Data: Frequency Distributions and Graphic Presentation.
© Copyright McGraw-Hill CHAPTER 2 Frequency Distributions and Graphs.
McGraw-Hill/IrwinCopyright © 2009 by The McGraw-Hill Companies, Inc. All Rights Reserved. Chapter 2 Descriptive Statistics: Tabular and Graphical Methods.
Chapter 3: Organizing Data. Raw data is useless to us unless we can meaningfully organize and summarize it (descriptive statistics). Organization techniques.
2- 1 Chapter Two McGraw-Hill/Irwin © 2006 The McGraw-Hill Companies, Inc., All Rights Reserved.
Understandable Statistics Seventh Edition By Brase and Brase Prepared by: Lynn Smith Gloucester County College Chapter Two Organizing Data.
Understanding Basic Statistics
Chapter 2 Frequency Distributions and Graphs 1 Copyright © 2012 The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Displaying Data  Data: Categorical and Numerical  Dot Plots  Stem and Leaf Plots  Back-to-Back Stem and Leaf Plots  Grouped Frequency Tables  Histograms.
Section 12.2 Picturing Data Math in Our World. Learning Objectives  Draw bar graphs and pie charts.  Draw histograms and frequency polygons.  Draw.
Copyright © 2009 Pearson Education, Inc. 3.2 Picturing Distributions of Data LEARNING GOAL Be able to create and interpret basic bar graphs, dotplots,
Describing Data Week 1 The W’s (Where do the Numbers come from?) Who: Who was measured? By Whom: Who did the measuring What: What was measured? Where:
 2012 Pearson Education, Inc. Slide Chapter 12 Statistics.
Descriptive Statistics: Tabular and Graphical Methods
Chapter 12 Statistics 2012 Pearson Education, Inc.
Chapter 12 Statistics.
Chapter 2: Methods for Describing Data Sets
3.2 Picturing Distributions of Data
Laugh, and the world laughs with you. Weep and you weep alone
Frequency Distributions and Graphs
An Introduction to Statistics
Bar Graphs, Circle Graphs, and Time-Series Graphs
Understanding Basic Statistics
Experimental Design Experiments Observational Studies
Essentials of Statistics 4th Edition
Presentation transcript:

© 2008 McGraw-Hill Higher Education The Statistical Imagination Chapter 3. Charts and Graphs: A Picture Says a Thousand Words

© 2008 McGraw-Hill Higher Education Graphs and Charts: Pictorial Presentation of Data Graphs and charts provide a direct sense of proportion With graphics, visible spatial features substitute for abstract numbers

© 2008 McGraw-Hill Higher Education Types of Graphs and Levels of Measurement For nominal/ordinal variables, use pie charts and bar charts For interval/ratio variables, use histograms and polygons (line graphs)

© 2008 McGraw-Hill Higher Education Graphing and Table Guidelines Choose a design based on a variable’s level of measurement, study objectives, and targeted audience A good graphic simplifies, not complicates A good graph is self-explanatory Produce rough drafts and seek advice Adhere to inclusiveness and exclusiveness Provide a descriptive title and indicate the source of material Scrutinize computer generated graphics

© 2008 McGraw-Hill Higher Education Pie Chart A circle that is dissected or sliced from its center point with each slice representing the proportional frequency of a category of a nominal/ordinal variable Pie charts are especially useful for conveying a sense of fairness, relative size, or inequality among categories

© 2008 McGraw-Hill Higher Education Constructing a Pie Chart To determine the correct size of a “slice,” multiply a category’s proportional frequency by 360 degrees Use a protractor to cut the pie Percentages are placed on the pie chart for the sake of clarity

© 2008 McGraw-Hill Higher Education Interpreting a Pie Chart Focus on the largest pie slice (i.e., the category with the highest percentage frequency) and comment on it Compare slices and comment on stark differences in sizes Compare the results to other populations Summarize with a main point

© 2008 McGraw-Hill Higher Education Bar Chart A series of vertical or horizontal bars with the length of a bar representing the percentage frequency of a category of a nominal/ordinal variable Bar charts are especially useful for conveying a sense of competition among categories

© 2008 McGraw-Hill Higher Education Constructing a Bar Chart Construct on two axes, the abscissa (horizontal) and the ordinate (vertical) Categories of a variable are situated on one axis, and markings for percentages on the other To determine the correct bar size for a category, compute its percentage frequency To compare several groups, use clustered bar charts

© 2008 McGraw-Hill Higher Education Interpreting a Bar Chart Observe the heights of bars and comment on the tallest (i.e., the category with the highest frequency) Compare and rank heights of bars and comment on stark differences Compare the results to other populations Summarize with a main point

© 2008 McGraw-Hill Higher Education Frequency Histogram A 90-degree plot presenting the scores of an interval/ratio variable along the horizontal axis and the frequency of each score in a column parallel to the vertical axis Similar to bar charts except columns may touch to account for real limits and the principle of inclusiveness

© 2008 McGraw-Hill Higher Education Constructing a Histogram Work from a frequency distribution and calculate the real limits of each score of X. Draw the horizontal axis and label for X. Draw the vertical axis and label for frequency of cases Draw the columns with the height of a column representing the frequency of scores for a given real limit span of X The width of each column of the histogram will be the same

© 2008 McGraw-Hill Higher Education Interpreting Frequency Histograms Observe the heights of columns and note the tallest (i.e., the score with the highest frequency) Look for clusters of columns and a “central tendency” Look for symmetry (balance) in the shape of the histogram Summarize with a main point

© 2008 McGraw-Hill Higher Education Frequency Polygon A 90-degree plot with interval/ratio scores plotted on the horizontal axis and score frequencies depicted by the heights of dots located above scores and connected by straight lines Portrays a sense of trend or movement Especially useful for comparing two or more samples

© 2008 McGraw-Hill Higher Education Constructing a Polygon Work from a frequency distribution Draw the horizontal axis and label for the variable X. Draw the vertical axis and label for the frequency or percentage of cases Place dots above the scores X at the height of the frequency or percentage frequency Connect the dots with straight lines, closing the ends to the baseline of the lower and upper real limits of the distribution

© 2008 McGraw-Hill Higher Education Interpreting Polygons Look for peaks and comment on the tallest (i.e., the score with the highest frequency) Look for expanse of space under the line and for peaks and valleys Look for a “central tendency” Look for symmetry (balance) in the shape of the line graph Summarize with a main point

© 2008 McGraw-Hill Higher Education Polygons with Two or More Groups When two or more groups (populations, samples, or subsamples) are plotted, compare their peaks and shapes Plot percentage frequencies to adjust for differing group sizes Look for contrasting central tendencies among the groups Note the presence or lack of overlap in the polygons of any two groups

© 2008 McGraw-Hill Higher Education Graphs Reveal Outliers For a distribution of scores, an outlier (or deviant) score is one that stands out as markedly different from the others With a trained eye, outliers may be noted in a frequency distribution, but are easily detected with graphs

© 2008 McGraw-Hill Higher Education Statistical Follies Graphs may be intentionally or mistakenly distorted Make sure any claimed differences in scores is real and not simply a distortion of the graphic Use computer graphics carefully and edit output. Rely on the computer as simply a drawing tool