Fast spin echo 단국대학교 영상의학과 유 동 수.

Slides:



Advertisements
Similar presentations
Durgesh Kumar Dwivedi Department of NMR & MRI AIIMS, New Delhi, India
Advertisements

Imaging Sequences part I
Chapter 7: Gradient Echo Imaging Methods
Proton Spin In absence of a magnetic field, protons spin at random
In Chan Song, Ph.D. Seoul National University Hospital
M R I Pulse Sequences Jerry Allison Ph.D..
BE 581 Lecture 3- Intro to MRI.
MR Sequences and Techniques
MR TRACKING METHODS Dr. Dan Gamliel, Dept. of Medical Physics,
Statistical Parametric Mapping
Parameters and Trade-offs
Magnetic Resonance Imaging
Topics spatial encoding - part 2. Slice Selection  z y x 0 imaging plane    z gradient.
Chapter 9 Basic MRI I Mark D. Herbst, MD, PhD. Notice This lecture contained many drawings on the whiteboard, so get these from one of the other students.
Basic Principles MRI related to Neuroimaging Xiaoping Hu Department of Biomedical Engineering Emory University/Georgia Tech
Noll Spin-Warp Imaging For each RF pulse:For each RF pulse: –Frequency encoding is performed in one direction –A single phase encoding value is obtained.
Terry M. Button, Ph.D. Principals of Magnetic Resonance Image Formation.
Relaxation Exponential time constants T1 T2 T2*
MRI, FBP and phase encoding. Spins Precession RF pulse.
EPI – Echo Planar Imaging Joakim Rydell
FMRI: Biological Basis and Experiment Design Lecture 9: Pulse sequences, Take 3 Slice selection homework review Pulse sequence/k- space trajectory matching.
Psy 8960, Fall ‘06 Fourier transforms1 –1D: square wave –2D: k x and k y Spatial encoding with gradients Common artifacts Phase map of pineapple slice.
Psy 8960, Fall ‘06 EPI, Part 2: variants1 Segmentation Partial Fourier Spin echo vs. gradient echo Inversion recovery Long vs. short TE.
Compressed Sensing for Chemical Shift-Based Water-Fat Separation Doneva M., Bornert P., Eggers H., Mertins A., Pauly J., and Lustig M., Magnetic Resonance.
Tissue Contrast intrinsic factors –relative quantity of protons tissue proton density –relaxation properties of tissues T1 & T2 relaxation secondary factors.
Medical Imaging Systems: MRI Image Formation
Advanced pulse sequences
Imaging Sequences part II
Seminar October, 2008 j. brnjas-kraljević. Imaging (MRI)  tomography technique  tomography technique – the volume image is built up by images of thin.
Medical Imaging Systems: MRI Image Formation
Introduction to Magnetic Resonance Imaging Bruno Quesson, CR1 CNRS.
Pulse sequences.
Pulse Sequences Types of Pulse Sequences: Functional Techniques
Chapter 6 Lecture Spin Echo Imaging Methods Mark D. Herbst, MD, PhD Two Main Types of MR methods –Spin Echo –uses RF pulse to get an echo –Gradient Echo.
Basics of MRI.
RT 4912 Review (A) Rex T. Christensen MHA RT (R) (MR) (CT) (ARRT) CIIP.
Contrast Mechanism and Pulse Sequences Allen W. Song Brain Imaging and Analysis Center Duke University.
Quiz In a 2D spin warp or FT MR scan, aliasing should only occur
Rad T 265 MRI Lecture. No Magnetic Field = No Net Magnetization Protons align with a magnetic field…
G Practical MRI 1 Basic pulse sequences.
Contrast Mechanisms in MRI Introduction to Cardiovascular Engineering Michael Jay Schillaci, PhD Managing Director, Physicist Tuesday, September 16 th,
High Resolution 3D Diffusion Pulse Sequence Dept. of Radiology Medical Imaging Research Lab. University of Utah Eun-Kee Jeong, Ph.D. Ph.D. Seong-Eun Kim,
Contrast Mechanism and Pulse Sequences
Statistical Parametric Mapping
BIOE 220/RAD 220 REVIEW SESSION 6 March 5, What We’ll Cover Today General questions? Spinal cord anatomy review Fat in images T2* vs T2 decay Review.
NEW SEQUENCES LAVA Liver Acquisition with Volume Acceleration.
MRI CASE Done By: Haya Al-Thuwaini Ro’aa Al-Nemer Kholoud Al-Washmi Prepared For: Dr.Halima,,
MRI Physics: Pulse Sequences
Anna Beaumont FRCR Part I Physics
Radiology 401 MR Imaging of the Brain John R. Hesselink, M.D.
MRI: Contrast Mechanisms and Pulse Sequences
Magnetic Resonance Learning Objectives
Principles of MRI Physics and Engineering Allen W. Song Brain Imaging and Analysis Center Duke University.
In vivo MRI of Fast Relaxing Spins Using a Swept Radiofrequency Djaudat Idiyatullin, Curt Corum, Jang-Yeon Park, Michael Garwood Center for Magnetic Resonance.
Comparison of T1 FLAIR and T1 FSE Images Andrew Allmendinger, DO Sylvie Destian, MD.
LIVER MRI MANDATORY SEQUENCES P.Zerbib, A.Luciani, F.Pigneur, A.Rahmouni Henri Mondor Hospital – Créteil, Paris Radiology Department Pr.A.RAHMOUNI.
Chapter 5 Mark D. Herbst, M.D., Ph.D.. The MR Imaging Process Two major functions –Acquisition of RF signals –Reconstruction of images.
FMRI data acquisition.
MRI Physics in a Nutshell Christian Schwarzbauer
بسم الله الرحمن الرحيم.
Magnetic Resonance Imaging: Physical Principles
Assume object does not vary in y
Bioengineering 280A Principles of Biomedical Imaging Fall Quarter 2005 MRI Lecture 5 Thomas Liu, BE280A, UCSD, Fall 2005.
MRI Pulse Sequences: IR, EPI, PC, 2D and 3D
Chapter 11 Lecture Mark D. Herbst, M.D., Ph.D..
Basic MRI I Mark D. Herbst, MD, PhD
QUIZ 10: Optimizing the MRI of biliary network
Pulse sequence diagrams show the benefits of parallel imaging for DWI
The echo time (TE) The echo time (TE) refers to the time between the application of the radiofrequency excitation pulse and the peak of the signal induced.
MRI: 造影原理.
Presentation transcript:

Fast spin echo 단국대학교 영상의학과 유 동 수

Contents FSE의 원리와 특성 : (C)SE와 비교 FSE의 장점,단점 FSE의 변형 22

FSE RARE (1986) FSE (Fast spin echo) TSE (Turbo spin echo) (Rapid Acquisition with Relaxation Enhancement) FSE (Fast spin echo) TSE (Turbo spin echo) 21

FSE Spin echo의 특성 Fast scan Long TR (Multiple RF pulse, Slice number) : Image quality ↑, Artifact ↓ Fast scan Long TR (Multiple RF pulse, Slice number) - T2강조 Conventional SE Fast SE 1 NEX 4 NEX 9 min 28 sec 2 min 25 sec 20

주파수 (Frequency) 부호화 경사( Gx ) Spin Echo, k-space k-space RF signal (Echo) 위상 (Phase) 부호화 경사 ( Gy ) 주파수 (Frequency) 부호화 경사( Gx ) RF Pulse 90° 180° Fourier Transform 주파수(Frequency) 부호 축 ( Kx) 위상(Phase)부호축 ( Ky) + 128 - 128 256개의 phase encoding을 채울 경우 TR 256번을 반복 19

FSE vs CSE 18 FSE CSE Time saving No time saving TR TEeff 80 Multiple 180° pulse FSE CSE TR 90° 180° TE30 TE60 TE80 TE100 90° 180° 90° RF Pulse 위상 (Phase) 부호경사 TE80 K-space TEeff 80 TE 80 Time saving No time saving 18

FSE vs CSE (CPMG) 17 FSE CSE (CPMG) Single image Time saving Multiple 180° pulse CSE (CPMG) TR 90° 180° TE30 TE60 TE80 TE100 90° 180° TE30 TE60 TE80 TE100 RF Pulse 위상 (Phase) 부호경사 K-space TEeff 80 TE30 (PD) TE60 TE80 (T2WI) Single image Time saving Multiple image No time saving 17

Fast Spin echo - 용어 Echo train length (ETL) Echo train spacing (ETS) : Number of 180° RF pulse : Scan time ∝ (1/ETL) Echo train spacing (ETS) : Space between 180° RF pulse Effective echo time (TE eff) : SE의 TE와 유사하게 사용되나 다른 개념 : TE of k-space mid-line (위상(Phase) 부호화경사 = 0) : Echo ↑↑ : Contrast, SNR에 주로 기여 180° 90° ETS + 128 전반적대조도 0 (Ky) 세부묘사 - 128 K-space 16

Fast Spin Echo 15 ETL (8) TE5 ETS TE eff SNR, Contrast에 기여 RF Pulse 90° 180° 180° 180° 180° 180° 180° ETL (8) RF Pulse TE eff Phase-encoding gradient Echo TE1 TE2 TE3 TE4 TE6 TE7 TE8 TE5 + 128 0 (Ky) - 128 Ky=0 SNR, Contrast에 기여 15

Effective TE 14 TEeff 40.36 msec 80.72 msec 96.86 msec 137.22 msec Blurring ↑ T2 effect ↑, SNR ↓ TEeff 40 TEeff 100 TE 40 TE 100 14

Echo Train Length 13 ETL 4 ETL 8 ETL 16 ETL 32 10 min 45 sec TR 5000msec, NEX = 2 ETL 4 ETL 8 ETL 16 ETL 32 10 min 45 sec 5 min 25 sec 2 min 45 sec 1 min 25 sec ETL ↑ : Time ↓ 문제점 : Slice number ↓ 보정 : TR ↑, Slice thickness ↑ 13

Scan Time Scan Time(SE) = (TR)(Ny)(NEX) Scan Time(FSE) = (TR)(Ny)(NEX) /ETL Ny NEX ETL : Phase-encoding steps Number of excitation Echo Train Length 예제 : TR이 5000 msec, 1NEX, 512 X 512의 해상도로 CSE와 ETL을 16으로 했을 때 FSE에서 영상을 얻는 시간은 ? CSE 5000(TR) * 512(Ny) * 1(NEX) = 2560초 (42.7분) FSE 5000(TR) * 512(Ny) * 1(NEX) / 16 = 160초 (2.7분) 12

Advantage Scan time↓: ∝ETL Image quality ↑ : Scan time saving 단계를 trade off – NEX ↑, resolution ↑ Spin echo와 유사한 contrast, imaging parameter Artifact (motion, susceptibility) ↓ : by 180° refocusing pulse Shimming magnet ↓ 11

Disadvantage Bright fat signal : Fat suppression image : J-coupling↓, diffusion mediated susceptibility ↓, MTC effect : Fat suppression image Conventional SE Fast SE Fast SE Fat suppression 10

Disadvantage Magnetic transfer contrast effect ↑ Magnetic susceptibility ( Hmr, Ca+ ) ↓ Conventional SE Fast SE 9

Disadvantage ETL ↑ ↑ Dual TE image Incorrect TEeff : Reduced coverage (slice number ↓) Dual TE image :Time consuming Incorrect TEeff : Use multiple TE 8

FSE의 변형 3D FSE (+ 3D) GRASE (+ GRE) Fast IR (+ IR) HASTE, SSFSE (+ Single shot) (+ Half fourier acquisition) 7

3D FSE Phase encoding : z 방향(Nz)을 추가 Multiple slices → Slap Scan time = (TR*NEX*Ny*Nz)/ETL More scan time Thinner image 2D Image 3D Image 6

GRASE (Gradient and Spin Echo) FSE GRASE FSE + GRE Spin echo를 일부가 GE로 대치 FSE와 유사한 대조도 GRE - Susceptibility ↑ (hemorrhage) Faster 90° 180° Gradient echo Spin echo 5

Fast IR (Inversion Recovery) 180° inversion pulse + FSE Fast STIR, Fast FLAIR Fast STIR Fast FLAIR 180° 90° 180° 180° 180° 180° 90° TI IR FSE 4

HASTE, SSFSE FSE (Single Shot) + Half fourier acq. Single shot Frequency encoding ( Kx) FSE (Single Shot) + Half fourier acq. Single shot : 매우 긴 하나의 echo train(64-128개)를 이용 Partial fourier technique : K-space의 일부에 date를 채움 Phase encoding ( Ky) K-space Partial fourier technique 64-128 90° 180° 3

HASTE, SSFSE Ultra-fast : 1-2초 (single breath hold) Abdomen, chest imaging MRCP Liver MR 2

Summary 감사합니다. Spin echo의 특성 Fast scan ∝ETL Advantage : Image quality ↑, Artifact↓ Disadvantage : Fat signal ↑, Slice number ↓ ETL, ETS, TE eff Advance of HW, pulse sequence – better image quality 감사합니다. 1