The VaR Measure Chapter 8

Slides:



Advertisements
Similar presentations
Market Risk Cheryl J. Rathbun Citigroup Chief Operating Officer
Advertisements

Chapter 25 Risk Assessment. Introduction Risk assessment is the evaluation of distributions of outcomes, with a focus on the worse that might happen.
Options, Futures, and Other Derivatives 6 th Edition, Copyright © John C. Hull Chapter 18 Value at Risk.
Risk Measurement for a Credit Portfolio: Part One
Value at Risk Chapter 18 Pertemuan 07
Historical Simulation, Value-at-Risk, and Expected Shortfall
Chapter 21 Value at Risk Options, Futures, and Other Derivatives, 8th Edition, Copyright © John C. Hull 2012.
1 AFDC MAFC Training Program Shanghai 8-12 December 2008 Value at Risk Christine Brown Associate Professor Department of Finance The University of Melbourne.
TK 6413 / TK 5413 : ISLAMIC RISK MANAGEMENT TOPIC 6A: VALUE AT RISK (VaR) (EXTENSION) 1.
VAR.
Chapter 21 Value at Risk Options, Futures, and Other Derivatives, 8th Edition, Copyright © John C. Hull 2012.
Value at Risk Concepts, data, industry estimates –Adam Hoppes –Moses Chao Portfolio applications –Cathy Li –Muthu Ramanujam Comparison to volatility and.
Regulation, Basel II, and Solvency II
Chapter 23 Credit Risk Options, Futures, and Other Derivatives, 8th Edition, Copyright © John C. Hull 2012.
Market-Risk Measurement
CHAPTER 8 Testing VaR Results to Ensure Proper Risk Measurement.
Value at Risk MGT 4850 Spring 2008 University of Lethbridge.
CHAPTER 9 Calculating Capital for Market Risk. INTRODUCTION VaR gives a solid foundation for assessing the amount of capital that should be held by a.
Chapter 6 The VAR Approach: CreditMetrics and Other Models.
“Money is better than poverty, if only for financial reasons,”
Risk Management and Financial Institutions 2e, Chapter 21, Copyright © John C. Hull 2009 Economic Capital and RAROC Chapter 21 1.
Volatility Chapter 9 Risk Management and Financial Institutions 2e, Chapter 9, Copyright © John C. Hull
Value at Risk (VaR) Chapter IX.
Correlations and Copulas Chapter 10 Risk Management and Financial Institutions 2e, Chapter 10, Copyright © John C. Hull
Market Risk VaR: Historical Simulation Approach
ISLAMIC RISK MANAGEMENT
Chapter 23 Credit Risk Options, Futures, and Other Derivatives, 8th Edition, Copyright © John C. Hull 2012.
Options, Futures, and Other Derivatives 6 th Edition, Copyright © John C. Hull Chapter 18 Value at Risk.
Value at Risk.
Risk Management and Financial Institutions 2e, Chapter 13, Copyright © John C. Hull 2009 Chapter 13 Market Risk VaR: Model- Building Approach 1.
FRM Zvi Wiener Following P. Jorion, Financial Risk Manager Handbook Financial Risk Management.
Alternative Measures of Risk. The Optimal Risk Measure Desirable Properties for Risk Measure A risk measure maps the whole distribution of one dollar.
The Oxford Guide to Financial Modeling by Ho & Lee Chapter 15. Risk Management The Oxford Guide to Financial Modeling Thomas S. Y. Ho and Sang Bin Lee.
LECTURE 22 VAR 1. Methods of calculating VAR (Cont.) Correlation method is conceptually simple and easy to apply; it only requires the mean returns and.
1 Value at Risk Chapter The Question Being Asked in VaR “What loss level is such that we are X % confident it will not be exceeded in N business.
Value at Risk Chapter 20 Value at Risk part 1 資管所 陳竑廷.
Value at Risk of Commercial Bank The Banking industry of Taiwan
Fundamentals of Futures and Options Markets, 5 th Edition, Copyright © John C. Hull Value at Risk Chapter 18.
Credit Risk Chapter 22 1 Options, Futures, and Other Derivatives, 7th Edition, Copyright © John C. Hull 2008.
Value at Risk Chapter 16. The Question Being Asked in VaR “What loss level is such that we are X % confident it will not be exceeded in N business days?”
CHAPTER SEVEN Risk, Return, and Portfolio Theory J.D. Han.
Market Risk VaR: Historical Simulation Approach N. Gershun.
Ch22 Credit Risk-part2 資管所 柯婷瑱. Agenda Credit risk in derivatives transactions Credit risk mitigation Default Correlation Credit VaR.
Measurement of Market Risk. Market Risk Directional risk Relative value risk Price risk Liquidity risk Type of measurements –scenario analysis –statistical.
Value at Risk Chapter 20 Options, Futures, and Other Derivatives, 7th International Edition, Copyright © John C. Hull 2008.
Lotter Actuarial Partners 1 Pricing and Managing Derivative Risk Risk Measurement and Modeling Howard Zail, Partner AVW
How to Build an Investment Portfolio The Determinants of Portfolio Choice The determinants of portfolio choice, sometimes referred to as determinants of.
Credit Risk Losses and Credit VaR
Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull 16.1 Value at Risk Chapter 16.
Options, Futures, and Other Derivatives, 4th edition © 1999 by John C. Hull 14.1 Value at Risk Chapter 14.
Money and Banking Lecture 11. Review of the Previous Lecture Application of Present Value Concept Internal Rate of Return Bond Pricing Real Vs Nominal.
March-14 Central Bank of Egypt 1 Strategic Asset Allocation.
Chapter 5 Understanding Risk
5. Volatility, sensitivity and VaR
Value at Risk and Expected Shortfall
Scenario Analysis and Stress Testing
Market-Risk Measurement
Risk Mgt and the use of derivatives
JPMorgan’s Riskmetrics and Creditmetrics
Economic Capital and RAROC
Chapter Five Understanding Risk.
Market Risk VaR: Historical Simulation Approach
Financial Risk Management
Market Risk VaR: Model-Building Approach
Scenario Analysis and Stress Testing
Value at Risk Chapter 9.
VaR Introduction I: Parametric VaR Tom Mills FinPricing
Lecture Notes: Value at Risk (VAR)
Credit Value at Risk Chapter 18
Counterparty Credit Risk in Derivatives
Presentation transcript:

The VaR Measure Chapter 8 Risk Management and Financial Institutions 2e, Chapter 8, Copyright © John C. Hull 2009

The Question Being Asked in VaR “What loss level is such that we are X% confident it will not be exceeded in N business days?” Risk Management and Financial Institutions 2e, Chapter 8, Copyright © John C. Hull 2009

VaR and Regulatory Capital Regulators base the capital they require banks to keep on VaR The market-risk capital is k times the 10-day 99% VaR where k is at least 3.0 Under Basel II, capital for credit risk and operational risk is based on a one-year 99.9% VaR Risk Management and Financial Institutions 2e, Chapter 8, Copyright © John C. Hull 2009

Advantages of VaR It captures an important aspect of risk in a single number It is easy to understand It asks the simple question: “How bad can things get?” Risk Management and Financial Institutions 2e, Chapter 8, Copyright © John C. Hull 2009

Example 8.1 (page 159) The gain from a portfolio during six month is normally distributed with mean $2 million and standard deviation $10 million The 1% point of the distribution of gains is 2−2.33×10 or − $21.3 million The VaR for the portfolio with a six month time horizon and a 99% confidence level is $21.3 million. Risk Management and Financial Institutions 2e, Chapter 8, Copyright © John C. Hull 2009

Example 8.2 (page 159) All outcomes between a loss of $50 million and a gain of $50 million are equally likely for a one-year project The VaR for a one-year time horizon and a 99% confidence level is $49 million Risk Management and Financial Institutions 2e, Chapter 8, Copyright © John C. Hull 2009

Examples 8.3 and 8.4 (page 160) A one-year project has a 98% chance of leading to a gain of $2 million, a 1.5% chance of a loss of $4 million, and a 0.5% chance of a loss of $10 million The VaR with a 99% confidence level is $4 million What if the confidence level is 99.9%? What if it is 99.5%? Risk Management and Financial Institutions 2e, Chapter 8, Copyright © John C. Hull 2009

Cumulative Loss Distribution for Examples 8. 3 and 8. 4 (Figure 8 Cumulative Loss Distribution for Examples 8.3 and 8.4 (Figure 8.3, page 160) Risk Management and Financial Institutions 2e, Chapter 8, Copyright © John C. Hull 2009

VaR vs. Expected Shortfall VaR is the loss level that will not be exceeded with a specified probability Expected shortfall is the expected loss given that the loss is greater than the VaR level (also called C-VaR and Tail Loss) Two portfolios with the same VaR can have very different expected shortfalls Risk Management and Financial Institutions 2e, Chapter 8, Copyright © John C. Hull 2009

Distributions with the Same VaR but Different Expected Shortfalls Risk Management and Financial Institutions 2e, Chapter 8, Copyright © John C. Hull 2009

Coherent Risk Measures (page 162) Define a coherent risk measure as the amount of cash that has to be added to a portfolio to make its risk acceptable Properties of coherent risk measure If one portfolio always produces a worse outcome than another its risk measure should be greater If we add an amount of cash K to a portfolio its risk measure should go down by K Changing the size of a portfolio by l should result in the risk measure being multiplied by l The risk measures for two portfolios after they have been merged should be no greater than the sum of their risk measures before they were merged Risk Management and Financial Institutions 2e, Chapter 8, Copyright © John C. Hull 2009

VaR vs Expected Shortfall VaR satisfies the first three conditions but not the fourth one Expected shortfall satisfies all four conditions. Risk Management and Financial Institutions 2e, Chapter 8, Copyright © John C. Hull 2009

Example 8.5 and 8.7 Each of two independent projects has a probability 0.98 of a loss of $1 million and 0.02 probability of a loss of $10 million What is the 97.5% VaR for each project? What is the 97.5% expected shortfall for each project? What is the 97.5% VaR for the portfolio? What is the 97.5% expected shortfall for the portfolio? Risk Management and Financial Institutions 2e, Chapter 8, Copyright © John C. Hull 2009

Examples 8.6 and 8.8 Two $10 million one-year loans each has a 1.25% chance of defaulting. All recoveries between 0 and 100% are equally likely. If there is no default the loan leads to a profit of $0.2 million. If one loan defaults it is certain that the other one will not default. What is the 99% VaR and expected shortfall of each project What is the 99% VaR and expected shortfall for the portfolio Risk Management and Financial Institutions 2e, Chapter 8, Copyright © John C. Hull 2009

Spectral Risk Measures A spectral risk measure assigns weights to quantiles of the loss distribution VaR assigns all weight to Xth quantile of the loss distribution Expected shortfall assigns equal weight to all quantiles greater than the Xth quantile For a coherent risk measure weights must be a non-decreasing function of the quantiles Risk Management and Financial Institutions 2e, Chapter 8, Copyright © John C. Hull 2009

Normal Distribution Assumption The simplest assumption is that daily gains/losses are normally distributed and independent with mean zero It is then easy to calculate VaR from the standard deviation (1-day VaR=2.33s) The T-day VaR equals times the one-day VaR Regulators allow banks to calculate the 10 day VaR as times the one-day VaR Risk Management and Financial Institutions 2e, Chapter 8, Copyright © John C. Hull 2009

Independence Assumption in VaR Calculations (Equation 8.3, page 166) When daily changes in a portfolio are identically distributed and independent the variance over T days is T times the variance over one day When there is autocorrelation equal to r the multiplier is increased from T to Risk Management and Financial Institutions 2e, Chapter 8, Copyright © John C. Hull 2009

Impact of Autocorrelation: Ratio of N-day VaR to 1-day VaR (Table 8 Impact of Autocorrelation: Ratio of N-day VaR to 1-day VaR (Table 8.1, page 204) T=1 T=2 T=5 T=10 T=50 T=250 r=0 1.0 1.41 2.24 3.16 7.07 15.81 r=0.05 1.45 2.33 3.31 7.43 16.62 r=0.1 1.48 2.42 3.46 7.80 17.47 r=0.2 1.55 2.62 3.79 8.62 19.35 Risk Management and Financial Institutions 2e, Chapter 8, Copyright © John C. Hull 2009

Choice of VaR Parameters Time horizon should depend on how quickly portfolio can be unwound. Bank regulators in effect use 1-day for market risk and 1-year for credit/operational risk. Fund managers often use one month Confidence level depends on objectives. Regulators use 99% for market risk and 99.9% for credit/operational risk. A bank wanting to maintain a AA credit rating will often use confidence levels as high as 99.97% for internal calculations. Risk Management and Financial Institutions 2e, Chapter 8, Copyright © John C. Hull 2009

Incremental VaR: Incremental effect of the ith component on VaR VaR Measures for a Portfolio where an amount xi is invested in the ith component of the portfolio (page 168-169) Marginal VaR: Incremental VaR: Incremental effect of the ith component on VaR Component VaR: Risk Management and Financial Institutions 2e, Chapter 8, Copyright © John C. Hull 2009

Properties of Component VaR The component VaR is approximately the same as the incremental VaR The total VaR is the sum of the component VaR’s (Euler’s theorem) The component VaR therefore provides a sensible way of allocating VaR to different activities Risk Management and Financial Institutions 2e, Chapter 8, Copyright © John C. Hull 2009

Back-testing (page 169-171) Back-testing a VaR calculation methodology involves looking at how often exceptions (loss > VaR) occur Alternatives: a) compare VaR with actual change in portfolio value and b) compare VaR with change in portfolio value assuming no change in portfolio composition Suppose that the theoretical probability of an exception is p (=1−X). The probability of m or more exceptions in n days is Risk Management and Financial Institutions 2e, Chapter 8, Copyright © John C. Hull 2009

Bunching Bunching occurs when exceptions are not evenly spread throughout the back testing period Statistical tests for bunching have been developed by Christoffersen (See page 171) Risk Management and Financial Institutions 2e, Chapter 8, Copyright © John C. Hull 2009