XI Transfinit ¥. Platon (427 - 348) There are many beautiful things. They are transitory. The idea of beauty is eternal Platonists: Mathematical items.

Slides:



Advertisements
Similar presentations
Georg Cantor
Advertisements

Cantor’s Infinities Raymond Flood Gresham Professor of Geometry.
Beyond Counting Infinity and the Theory of Sets Nate Jones & Chelsea Landis.
Basic Structures: Sets, Functions, Sequences, Sums, and Matrices
Basic Structures: Sets, Functions, Sequences, Sums, and Matrices
Introduction to Computability Theory
Great Theoretical Ideas in Computer Science.
CS1001 Lecture 22. Overview Mechanizing Reasoning Mechanizing Reasoning G ö del ’ s Incompleteness Theorem G ö del ’ s Incompleteness Theorem.
Logic and Set Theory.
∞Exploring Infinity ∞ By Christopher Imm Johnson County Community College.
Bernard Bolzano ( ) Studied philosophy, mathematics and physics in Prague starting 1796, doctorate Decided to become a priest was ordained.
Discrete Mathematics Lecture 4 Harper Langston New York University.
The Axiomatic Method. The axiomatic method I: Mathematical Proofs Why do we need to prove things? How do we resolve paradoxes?
Georg Cantor ( ) Founder of modern set theory.
Hilbert’s Problems By Sharjeel Khan.
1 Introduction to Computability Theory Lecture11: The Halting Problem Prof. Amos Israeli.
2012: J Paul GibsonTSP: Mathematical FoundationsMAT7003/L5- CountingAndEnumeration.1 MAT 7003 : Mathematical Foundations (for Software Engineering) J Paul.
Great Theoretical Ideas in Computer Science.
Cantor’s Legacy: Infinity And Diagonalization Great Theoretical Ideas In Computer Science Steven RudichCS Spring 2004 Lecture 25Apr 13, 2004Carnegie.
Cardinality of Sets Section 2.5.
Implications of Cantorian Transfinite Set Theory on Creation.
CS355 - Theory of Computation Lecture 2: Mathematical Preliminaries.
“TO INFINITY AND BEYOND” A DEEPER LOOK AND UNDERSTANDING.
1 How Big Is Infinity? Some Mathematical Surprises Roger House Scientific Buzz Café French Garden Restaurant & Bistro Sebastopol, CA 2013 July 25 Copyright.
1 Introduction to Abstract Mathematics Chapter 4: Sequences and Mathematical Induction Instructor: Hayk Melikya 4.1- Sequences. 4.2,
Math 3121 Abstract Algebra I Section 0: Sets. The axiomatic approach to Mathematics The notion of definition - from the text: "It is impossible to define.
Section 2.4. Section Summary Sequences. Examples: Geometric Progression, Arithmetic Progression Recurrence Relations Example: Fibonacci Sequence Summations.
Basic Concepts of Discrete Probability (Theory of Sets: Continuation) 1.
Lambda Calculus History and Syntax. History The lambda calculus is a formal system designed to investigate function definition, function application and.
What is a Real Number? Jim Loats. Ph. D. Professor Mathematics.
Paradoxes of the Infinite Kline XXV Pre-May Seminar March 14, 2011.
Relations, Functions, and Countability
CS201: Data Structures and Discrete Mathematics I
MATH 224 – Discrete Mathematics
CompSci 102 Discrete Math for Computer Science
COMPSCI 102 Introduction to Discrete Mathematics.
Based on Rosen, Discrete Mathematics & Its Applications, 5e Prepared by (c) Michael P. Frank Modified by (c) Haluk Bingöl 1/18 Module.
Aim: How can the word ‘infinite’ define a collection of elements?
Chapter 2 With Question/Answer Animations. Section 2.1.
Introduction to Real Analysis Dr. Weihu Hong Clayton State University 8/27/2009.
Basic Structures: Sets, Functions, Sequences, and Sums.
Stupid questions? Are there more integers than even integers?
I dare you not to get excited when you read Cantor’s Diagonal Proof: Georg Cantor was the most important mathematician no one has ever heard of. He did.
Great Theoretical Ideas in Computer Science.
CSE 20 – Discrete Mathematics Dr. Cynthia Bailey Lee Dr. Shachar Lovett Peer Instruction in Discrete Mathematics by Cynthia Leeis licensed under a Creative.
Anselm’s “1st” ontological argument Something than which nothing greater can be thought of cannot exist only as an idea in the mind because, in addition.
CompSci 102 Discrete Math for Computer Science February 7, 2012 Prof. Rodger Slides modified from Rosen.
Lecture 4 Infinite Cardinals. Some Philosophy: What is “2”? Definition 1: 2 = 1+1. This actually needs the definition of “1” and the definition of the.
1 Melikyan/DM/Fall09 Discrete Mathematics Ch. 7 Functions Instructor: Hayk Melikyan Today we will review sections 7.3, 7.4 and 7.5.
CS 285- Discrete Mathematics
Sets and Size Basic Question: Compare the “size” of sets. First distinction finite or infinite. –What is a finite set? –How can one compare finite sets?
Chapter 2 1. Chapter Summary Sets (This Slide) The Language of Sets - Sec 2.1 – Lecture 8 Set Operations and Set Identities - Sec 2.2 – Lecture 9 Functions.
TOK: Mathematics Unit 1 Day 1. 2 – B 2 = AB – B 2 Factorize both sides: (A+B)(A-B) = B(A-B) Divide both sides by (A-B): A = B = B Since A = B, B+B=B Add.
Sequences Lecture 11. L62 Sequences Sequences are a way of ordering lists of objects. Java arrays are a type of sequence of finite size. Usually, mathematical.
Chapter 4 Introduction to Set Theory
Raymond Flood Gresham Professor of Geometry
Mathematics and the Infinite (part 1)
MATH 224 – Discrete Mathematics
2.4 Sequences and Summations
2.6 Infinite Sets By the end of the class you will be able calculate the cardinality of infinite sets.
Cardinality of Sets Section 2.5.
Lecture 7 Functions.
Discrete Structures for Computer Science
XI Transfinite. XI Transfinite Plato ( ) There are many beautiful things. They are transitory. The idea of beauty is eternal. Platonists: Mathematical.
Lesson 5 Relations, mappings, countable and uncountable sets
Module #4.5, Topic #∞: Cardinality & Infinite Sets
Discrete Mathematics and its Applications
Lesson 5 Relations, mappings, countable and uncountable sets
Module #4.5, Topic #∞: Cardinality & Infinite Sets
Cardinality Definition: The cardinality of a set A is equal to the cardinality of a set B, denoted |A| = |B|, if and only if there is a one-to-one correspondence.
Presentation transcript:

XI Transfinit ¥

Platon ( ) There are many beautiful things. They are transitory. The idea of beauty is eternal Platonists: Mathematical items and laws exist. They can be found but not invented. The numbers are a free creation of man.... we create a new, an irrational number. Richard Dedekind ( )

Aristoteles ( ) denies the actually infinite in philosophy and mathematics. Assumes it only in the realm of Gods. Robert Grosseteste ( ) Prof. at Oxford, teacher of Roger Bacon: The actually infinite is a definite number. “The number of points in a segment one ell long is its true measure.” John Baconthorpe (? ) The actually infinite exists in number, time, and amount.

Summa theologica I, qu. 7, art. 4 There cannot be a finished infinite set. Thomas of Aquin ( ) Saint, Doctor angelicus Gottfried Wilhelm Leibniz ( ) Three degrees of infinity: 1) Greater than every nameable magnitude (like the mathematical  ) 2) The largest of its kind: the whole space, eternity. 3) God

„I am so in favour of the actually Infinite. I believe that nature instead of abhorring it, as usually is assumed, uses it everywhere frequently in order to show better the perfection of ist author. Therefore I believe that there is no single piece of matter that is not – I don‘t say divisible – but actually divided; consequently even the least particle has to be considered as a world filled with an infinity of different creatures. Leibniz, in a letter to Dangicourt, 1716, said he did not believe in the real existence of the "grandeurs veritablement infinitesimales. they are only "fictions utiles"; but he had been asked by his followers not to publish this opinion in order not to betray their idea (i.e., actually infinitely small magnitudes).

Bernard de Fontenelle ( ) Author, philosopher, member of the Académie française, secretary of the Académie des sciences introduced actually infinite numbers Eléments de la Géometrie de l'infini, Paris (1727) Pater Emanuel Maignan ( ) Minorit, Prof at the university Toulouse. There can be an actual infinity.

I distinguish an "Infinitum aeternum increatum sive Absolutum", referring to God and his properties, and an "Infinitum creatum sive Transfinitum", referring to infinity in the created nature like, e.g., the actually infinite number of created beings in the universe as well as on our Earth and, very probably, in each not vanishing part of space. Georg Cantor ( ) 1879 professor of mathematics at Halle The founder of set theory and, together with Möbius and Poincaré founder of topology.

The range of your telescope reaches from 5 m to infinity and beyond. Dominus regnabit in aeternum et u ltra. [ Exodus 15, 18] The completed infinite can appear in different modifications which can be distinguished with extreme sharpness by the so called finite human mind. [Cantor to Lipschitz, ] Georg Cantor ( ) Prison sentence for life – with preventive detention afterwards.

Galileo Galilei ( ) ^The infinite should obey another arithmetic than the finite. Gottfried Wilhelm Leibniz ( ) The rules of the finite remain valid in the infinite and vice versa. The infinitey small (calculus) and the infinitely large (sum of the harmonic series)

Arithmetic of the infiniteUndefined expressions

Salviati: Number of squares = number of numbers. Every natural number is the square root of a square.

Bernard Bolzano ( ) Czech Theologian, Philosopher und Mathematician Creator of the notion: Menge (set) Different infinities: God (infinite Force, Goodness Wisdom) Numbers, Body, Surface, Line, Space, Time, Digits of Ö 2. Die Paradoxien des Unendlichen (1851)

Bernard Bolzano ( ) Czech Theologian, Philosopher and Mathematician Creator of the notion: Menge (set) Die Paradoxien des Unendlichen (1851) A bijective mapping y = 2x Does not prove the same number of points.

The whole is always larger than ist proper part. There are different degrees of infinity. There are as many circles as circumferences. There are infinitely more diameters of a circle. Focal points to centers of ellipses = 2:1. Corners to sides of cubes: 8:6. There are more natural numbers than squares, more squares than cubes. An interval is finite with respect to ist length, infinite with respect to ist points.

A = { x I x 2 - 3x + 2 = 0 } B = { x I x   und 0 < x < 3 } C = { x I a, b, c, x   und a x + b x = c x } D = { 1, 2 }

The infinite set of finite numbers ô has the smallest infinite cardinal number À 0. À 0 > n for every n e ô. M countably infinite: Bijection with ô possible. Cardinality of every countably infinite set: À 0. A set is infinite if a bijection with a subset exists. There are actual infinities: infinite numbers of different size. Georg Cantor ( ) Richard Dedekind ( )

Ð is countably infinite, has cardinal number À 0. countable := can be represented by a sequence

Index = Ia 0 I + Ia 1 I + Ia 2 I Ia n I + n Proof of countability of algebraic numbers after Dedekind (1873) p(x) = a 0 + a 1 x 1 + a 2 x a n x n = 0

nr(n) ___________________ 10, , , , ,

nr(n) ___________________ 10, , , , ,

À 0 < 2 À 0 = C Ñ is uncountable  I  I >  0 nr(n) ___________________ 10, , , , ,

Power set  (M) M = {a,b}  ({a,b}) = {{ },{a},{b},{a,b}} Cardinal number of the set M: IMI Cardinal number of the power set  (M) : 2 IMI  ({a,b,c}) = {{ },{a},{b},{a,b},{c},{a,c},{b,c},{a,b,c}} I  ({ })I = 2 0 = 1 I  ({a})I = 2 1 = 2 M = {a,b,c} has cardinal number I{a,b,c}I = 3 I  (M)I = 2 3 = 8 I  (  (M))I = 2 8 = 256 I  (  (  (M)))I =  I  (  )I = 2  0 >  0 I  (  )I = I  I There is an actual infinity  0, because it can be surpassed by 2  0.

Bijection ô  P ( ô ) () is impossible: Let‘s try it: ô  P ( ô ) ( 1  {1} 2  {2,4,6,...} 3  {1,2} 4  {3} 5  {1,3,5,...}... M = {3,4,...} = Set of „non-generators“: n not in the image set What number is mapped on M? 4711   {3,4,...,4711,...}

Infinite sequence of infinities Transfinite cardinal numbers:  0 < 2  0 < 2 2  0 <...

David Hilbert ( ) 1892 Professor in Königsberg in Göttingen Hilbert‘s Hotel One guest Infinitely many guests Room maid

Cantor: Je le vois, mais je ne crois pas: The cardinal number of points of a square [0,1] 2 is equal to the cardinal number of an interval [0,1]. 0,x 1 y 1 x 2 y 2 x 3 y 3 x 4 y 4 x 5 y (x I y) = (0,111 I 0,222)  0,121212

Earl Bertrand Russell (l ) The set of all sets which do not contain themselves: M = {X I X Ï X } (19 03)

The set of all sets cannot exist. It would contain ist power set.

Ordinary sets do not contain themselves. ô is not a natural number. Extraordinary sets contain themselves. The set of all objects except cars is not a car. The set of abstract notions is an abstract notion. The set of all ordinary sets is impossible. As an ordinary set it would contain itself (together with all ordinary sets) but then it would be extraordinary and would not belong to the set of all ordinary sets – and would not contain itself – and would be ordinary – and would belong to the set of all ordinary sets – and …

Self describingNot self describing frequentseldom Ordinary sets do not contain themselves. ô is not a natural number. Extraordinary sets contain themselves. The set of all objects except cars is not a car. The set of abstract notions is an abstract notion. The set of all ordinary sets is impossible. As an ordinary set it would contain itself (together with all ordinary sets) but then it would be extraordinary and would not belong to the set of all ordinary sets – and would not contain itself – and would be ordinary – and would belong to the set of all ordinary sets – and…

Self describingNot self describing frequentseldom abstracthappy Ordinary sets do not contain themselves. ô is not a natural number. Extraordinary sets contain themselves. The set of all objects except cars is not a car. The set of abstract notions is an abstract notion. The set of all ordinary sets is impossible. As an ordinary set it would contain itself (together with all ordinary sets) but then it would be extraordinary and would not belong to the set of all ordinary sets – and would not contain itself – and would be ordinary – and would belong to the set of all ordinary sets – and…

Self describingNot self describing frequentseldom abstracthappy oldnew Ordinary sets do not contain themselves. ô is not a natural number. Extraordinary sets contain themselves. The set of all objects except cars is not a car. The set of abstract notions is an abstract notion. The set of all ordinary sets is impossible. As an ordinary set it would contain itself (together with all ordinary sets) but then it would be extraordinary and would not belong to the set of all ordinary sets – and would not contain itself – and would be ordinary – and would belong to the set of all ordinary sets – and…

Self describingNot self describing frequentseldom abstracthappy oldnew comprehensibleincomprehensible Ordinary sets do not contain themselves. ô is not a natural number. Extraordinary sets contain themselves. The set of all objects except cars is not a car. The set of abstract notions is an abstract notion. The set of all ordinary sets is impossible. As an ordinary set it would contain itself (together with all ordinary sets) but then it would be extraordinary and would not belong to the set of all ordinary sets – and would not contain itself – and would be ordinary – and would belong to the set of all ordinary sets – and…

Self describingNot self describing frequentseldom abstracthappy oldnew comprehensibleincomprehensible shortsupershort Ordinary sets do not contain themselves. ô is not a natural number. Extraordinary sets contain themselves. The set of all objects except cars is not a car. The set of abstract notions is an abstract notion. The set of all ordinary sets is impossible. As an ordinary set it would contain itself (together with all ordinary sets) but then it would be extraordinary and would not belong to the set of all ordinary sets – and would not contain itself – and would be ordinary – and would belong to the set of all ordinary sets – and…

Self describingNot self describing frequentseldom abstracthappy oldnew comprehensibleincomprehensible shortsupershort Not self describing Ordinary sets do not contain themselves. ô is not a natural number. Extraordinary sets contain themselves. The set of all objects except cars is not a car. The set of abstract notions is an abstract notion. The set of all ordinary sets is impossible. As an ordinary set it would contain itself (together with all ordinary sets) but then it would be extraordinary and would not belong to the set of all ordinary sets – and would not contain itself – and would be ordinary – and would belong to the set of all ordinary sets – and… Not self describing

Protagoras‘ Student Socrates: I know that I don‘t know. Epimenides: All Cretans lie. No rule without exception. This theorem is not provable. The next sentence is wrong. The preceding sentence is true. Moon consists of white cheese. Both senteneces in this box are false. t f t t f f

The set of all numbers which cannot be defined with a finite number of characters contains the smallest number that cannot be defined with a finite number of characters. = 77 charcters Berry‘s Paradox

Is the next infinity  1 = 2  0 ? Or is there an aleph between  0 and  1 = C = 2  0 ? Continuum hypothesis Analogy: Starting from M = {a,b,c} the cardinal number |M| = 100 cnnot be reached I  (M)I = 2 3 = 8 I  (  (M))I = 2 8 = 256 I  (  (  (M)))I =  In 1900 David Hilbert ( ) mentioned the 23 most important problems of mathematics in a talk; no. 1 was the proof of the continuum hypothesis.