Ted Adelson’s checkerboard illusion. Motion illusion, rotating snakes.

Slides:



Advertisements
Similar presentations
Motion illusion, rotating snakes. Slide credit Fei Fei Li.
Advertisements

Multiscale Analysis of Images Gilad Lerman Math 5467 (stealing slides from Gonzalez & Woods, and Efros)
Image Interpolation CS4670: Computer Vision Noah Snavely.
15-463: Computational Photography Alexei Efros, CMU, Spring 2010 Most slides from Steve Marschner Sampling and Reconstruction.
Slides from Alexei Efros
CS 691 Computational Photography
Computational Photography: Sampling + Reconstruction Connelly Barnes Slides from Alexei Efros and Steve Marschner.
Linear Filtering – Part II Selim Aksoy Department of Computer Engineering Bilkent University
Computational Photography CSE 590 Tamara Berg Filtering & Pyramids.
First color film Captured by Edward Raymond Turner Predates Prokudin-Gorskii collection Like Prokudin-Gorskii, it was an additive 3-color system.
Sampling, Aliasing, & Mipmaps
Image Filtering, Part 2: Resampling Today’s readings Forsyth & Ponce, chapters Forsyth & Ponce –
Convolution, Edge Detection, Sampling : Computational Photography Alexei Efros, CMU, Fall 2006 Some slides from Steve Seitz.
CSCE 641 Computer Graphics: Image Sampling and Reconstruction Jinxiang Chai.
Sampling and Pyramids : Rendering and Image Processing Alexei Efros …with lots of slides from Steve Seitz.
Edges and Scale Today’s reading Cipolla & Gee on edge detection (available online)Cipolla & Gee on edge detection Szeliski – From Sandlot ScienceSandlot.
Lecture 2: Edge detection and resampling
Image transformations, Part 2 Prof. Noah Snavely CS1114
CSCE 641 Computer Graphics: Image Sampling and Reconstruction Jinxiang Chai.
Image Pyramids and Blending
Image Sampling Moire patterns
Linear filtering. Overview: Linear filtering Linear filters Definition and properties Examples Gaussian smoothing Separability Applications Denoising.
Lecture 4: Image Resampling CS4670: Computer Vision Noah Snavely.
15-463: Computational Photography Alexei Efros, CMU, Fall 2011 Many slides from Steve Marschner Sampling and Reconstruction.
Lecture 3: Image Resampling CS4670: Computer Vision Noah Snavely Nearest-neighbor interpolation Input image 3x upsample hq3x interpolation (ZSNES)
Linear filtering.
Image Pyramids and Blending : Computational Photography Alexei Efros, CMU, Fall 2005 © Kenneth Kwan.
Slides from Alexei Efros, Steve Marschner Filters & fourier theory.
Image Sampling Moire patterns -
Fourier Analysis : Rendering and Image Processing Alexei Efros.
Image Pyramids and Blending
Recap from Friday Pinhole camera model Perspective projections Lenses and their flaws Focus Depth of field Focal length and field of view.
Computer Vision Spring ,-685 Instructor: S. Narasimhan Wean 5409 T-R 10:30am – 11:50am.
Applications of Image Filters Computer Vision CS 543 / ECE 549 University of Illinois Derek Hoiem 02/04/10.
Image Resampling CS4670: Computer Vision Noah Snavely.
Image Resampling CS4670: Computer Vision Noah Snavely.
Image Processing Xuejin Chen Ref:
Lecture 3: Edge detection CS4670/5670: Computer Vision Kavita Bala From Sandlot ScienceSandlot Science.
Computer Vision Spring ,-685 Instructor: S. Narasimhan Wean 5403 T-R 3:00pm – 4:20pm.
CS 691B Computational Photography
Brent M. Dingle, Ph.D Game Design and Development Program Mathematics, Statistics and Computer Science University of Wisconsin - Stout Image Processing.
(c) 2002 University of Wisconsin, CS 559
Lecture 5: Fourier and Pyramids
Linear filtering. Motivation: Image denoising How can we reduce noise in a photograph?
Projects Project 1a due this Friday Project 1b will go out on Friday to be done in pairs start looking for a partner now.
Cornell CS465 Fall 2004 Lecture 5© 2004 Steve Marschner 1 Sampling and reconstruction CS 465 Lecture 5.
Last Lecture photomatix.com. Today Image Processing: from basic concepts to latest techniques Filtering Edge detection Re-sampling and aliasing Image.
CSE 185 Introduction to Computer Vision Image Filtering: Spatial Domain.
Recall: Gaussian smoothing/sampling G 1/4 G 1/8 Gaussian 1/2 Solution: filter the image, then subsample Filter size should double for each ½ size reduction.
Image Resampling & Interpolation
Sampling and reconstruction
CS 4501: Introduction to Computer Vision Sparse Feature Detectors: Harris Corner, Difference of Gaussian Connelly Barnes Slides from Jason Lawrence, Fei.
Image Sampling Moire patterns
Image transformations
Recap from Wednesday Spectra and Color Light capture in cameras and humans.
Image Sampling Moire patterns
Multiscale Analysis of Images
More Image Manipulation
Sampling and Reconstruction
Samuel Cheng Slide credits: Noah Snavely
Image Processing Today’s readings For Monday
Motion illusion, rotating snakes
Filtering Part 2: Image Sampling
Linear filtering.
Image Sampling Moire patterns
Lecture 5: Resampling, Compositing, and Filtering Li Zhang Spring 2008
Oh, no, wait, sorry, I meant, welcome to the implementation of 20th-century science fiction literature, or a small part of it, where we will learn about.
Image Resampling & Interpolation
Resampling.
Samuel Cheng Slide credits: Noah Snavely
Presentation transcript:

Ted Adelson’s checkerboard illusion

Motion illusion, rotating snakes

Slides from Alexei Efros, Fei Fei Li, Steve Marschner, and others Sampling and Reconstruction 2 CS 195g: Computational Photography James Hays, Brown, Spring 2010

Detailed Recap of Wednesday

Slide credit Fei Fei Li

Image half-sizing This image is too big to fit on the screen. How can we reduce it? How to generate a half- sized version?

Image sub-sampling Throw away every other row and column to create a 1/2 size image - called image sub-sampling 1/4 1/8 Slide by Steve Seitz

Image sub-sampling 1/4 (2x zoom) 1/8 (4x zoom) Aliasing! What do we do? 1/2 Slide by Steve Seitz

Gaussian (lowpass) pre-filtering G 1/4 G 1/8 Gaussian 1/2 Solution: filter the image, then subsample Filter size should double for each ½ size reduction. Why? Slide by Steve Seitz

Subsampling with Gaussian pre-filtering G 1/4G 1/8Gaussian 1/2 Slide by Steve Seitz

Compare with... 1/4 (2x zoom) 1/8 (4x zoom) 1/2 Slide by Steve Seitz

Gaussian (lowpass) pre-filtering G 1/4 G 1/8 Gaussian 1/2 Solution: filter the image, then subsample Filter size should double for each ½ size reduction. Why? How can we speed this up? Slide by Steve Seitz

Image Pyramids Known as a Gaussian Pyramid [Burt and Adelson, 1983] In computer graphics, a mip map [Williams, 1983] A precursor to wavelet transform Slide by Steve Seitz

A bar in the big images is a hair on the zebra’s nose; in smaller images, a stripe; in the smallest, the animal’s nose Figure from David Forsyth

What are they good for? Improve Search Search over translations –Like project 1 –Classic coarse-to-fine strategy Search over scale –Template matching –E.g. find a face at different scales Pre-computation Need to access image at different blur levels Useful for texture mapping at different resolutions (called mip-mapping)

Gaussian pyramid construction filter mask Repeat Filter Subsample Until minimum resolution reached can specify desired number of levels (e.g., 3-level pyramid) The whole pyramid is only 4/3 the size of the original image! Slide by Steve Seitz

© 2006 Steve Marschner 45 Continuous convolution: warm-up Can apply sliding-window average to a continuous function just as well –output is continuous –integration replaces summation

© 2006 Steve Marschner 46 Continuous convolution Sliding average expressed mathematically: –note difference in normalization (only for box) Convolution just adds weights –weighting is now by a function –weighted integral is like weighted average –again bounds are set by support of f(x)

© 2006 Steve Marschner 47 One more convolution Continuous–discrete convolution –used for reconstruction and resampling

© 2006 Steve Marschner 48 Reconstruction

© 2006 Steve Marschner 49 Resampling Changing the sample rate –in images, this is enlarging and reducing Creating more samples: –increasing the sample rate –“upsampling” –“enlarging” Ending up with fewer samples: –decreasing the sample rate –“downsampling” –“reducing”

© 2006 Steve Marschner 50 Resampling Reconstruction creates a continuous function –forget its origins, go ahead and sample it

© 2006 Steve Marschner 51 Cont.–disc. convolution in 2D same convolution—just two variables now –loop over nearby pixels, average using filter weight –looks like discrete filter, but offsets are not integers and filter is continuous –remember placement of filter relative to grid is variable

© 2006 Steve Marschner 52 A gallery of filters Box filter –Simple and cheap Tent filter –Linear interpolation Gaussian filter –Very smooth antialiasing filter B-spline cubic –Very smooth

© 2006 Steve Marschner 53 Box filter

© 2006 Steve Marschner 54

© 2006 Steve Marschner 55

© 2006 Steve Marschner 56

© 2006 Steve Marschner 57 Effects of reconstruction filters For some filters, the reconstruction process winds up implementing a simple algorithm Box filter (radius 0.5): nearest neighbor sampling –box always catches exactly one input point –it is the input point nearest the output point –so output[i, j] = input[round(x(i)), round(y(j))] x(i) computes the position of the output coordinate i on the input grid Tent filter (radius 1): linear interpolation –tent catches exactly 2 input points –weights are a and (1 – a) –result is straight-line interpolation from one point to the next

© 2006 Steve Marschner 58 Properties of filters Degree of continuity Impulse response Interpolating or no Ringing, or overshoot interpolating filter used for reconstruction

© 2006 Steve Marschner 59 Ringing, overshoot, ripples Overshoot –caused by negative filter values Ripples –constant in, non-const. out –ripple free when:

© 2006 Steve Marschner 60 Yucky details What about near the edge? –the filter window falls off the edge of the image –need to extrapolate –methods: clip filter (black) wrap around copy edge reflect across edge vary filter near edge

© 2006 Steve Marschner 61 Median filters A Median Filter operates over a window by selecting the median intensity in the window. What advantage does a median filter have over a mean filter? Is a median filter a kind of convolution? Slide by Steve Seitz

© 2006 Steve Marschner 62 Comparison: salt and pepper noise Slide by Steve Seitz