Design Studies and Sensor Test for the Beam Calorimeter of the ILC Detector E. Kuznetsova DESY Zeuthen.

Slides:



Advertisements
Similar presentations
Proposal for a new design of LumiCal R. Ingbir, P. Ruzicka, V. Vrba October 07 Malá Skála.
Advertisements

17-May-15Actual problems of microworld physics. Gomel Investigation of radiation hard sensors for the ILC forward calorimeter K. Afanaciev, Ch. Grah,
17-May-15Actual problems of microworld physics. Gomel Investigation of radiation hard sensor materials K. Afanaciev on behalf of FCAL collaboration.
17-May-15FCAL collaboration meeting. Krakow.. Radiation hardness of GaAs Sensors K. Afanaciev, Ch. Grah, A. Ignatenko, W. Lange, W. Lohmann, M. Ohlerich.
March, 11, 2006 LCWS06, Bangalore, India Very Forward Calorimeters readout and machine interface Wojciech Wierba Institute of Nuclear Physics Polish Academy.
TESLA R&D: LCAL/LAT Achim Stahl DESY Zeuthen Cracow Tel Aviv Minsk Prague Colorado Protvino UCL London Dubna.
Radiation Hard Sensors for the BeamCal of the ILC C. Grah FCAL Collaboration 10 th ICATPP Conference, Villa Olmo.
DIAMOND ACTIVITIES DESY Zeuthen Wolfgang Lange. MOTIVATION and PEOPLE: Calorimetry in an environment with high radiation doses (TESLA beam cal) Beam diagnostics.
Investigation of the properties of diamond radiation detectors
Michele Faucci Giannelli TILC09, Tsukuba, 18 April 2009 SiW Electromagnetic Calorimeter Testbeam results.
August 2005Snowmass Workshop IP Instrumentation Wolfgang Lohmann, DESY Measurement of: Luminosity (precise and fast) Energy Polarisation.
August 2005Snowmass Workshop Instrumentation of the Very Forward Region of a Linear Collider Detector Wolfgang Lohmann, DESY.
Radiation Hard Sensors for the Beam Calorimeter of the ILC C. Grah 1, R. Heller 1, H. Henschel 1, W. Lange 1, W. Lohmann 1, M. Ohlerich 1,3, R. Schmidt.
22 December 20143rd FCAL Hardware WG Meeting 1 BeamCal sensors overview Sergej Schuwalow, DESY Hamburg.
1 LumiCal Optimization and Design Takashi Maruyama SLAC SiD Workshop, Boulder, September 18, 2008.
22 October 2009FCAL workshop, Geneve1 Polarization effects in the radiation damaged scCVD Diamond detectors Sergej Schuwalow, DESY Zeuthen On behalf of.
Ronen Ingbir Collaboration High precision design Tel Aviv University HEP Experimental Group Cambridge ILC software tools meeting.
Jan MDI WS SLAC Electron Detection in the Very Forward Region V. Drugakov, W. Lohmann Motivation Talk given by Philip Detection of Electrons and.
Karsten Büßer Beam Induced Backgrounds at TESLA for Different Mask Geometries with and w/o a 2*10 mrad Crossing Angle LCWS 2004 Paris April 19 th 2004.
Luminosity Monitoring and Beam Diagnostics FCAL Collaboration Workshop TAU, September 18-19, 2005 Christian Grah.
14 December nd CARAT Workshop, GSI, Darmstadt1 Radiation hardness studies with relativistic electrons Sergej Schuwalow, Uni-HH / DESY On behalf of.
Analysis of Beamstrahlung Pairs ECFA Workshop Vienna, November 14-17, 2005 Christian Grah.
Calorimeter technologies for forward region instrumentation K. Afanaciev 2, R. Dollan 1 V. Drugakov 2, C. Grah 1, E. Kouznetsova 1, W. Lange 1, W. Lohmann.
High Dose Irradiation of Possible FCAL Sensors at the S-DALINAC Ch.Grah Physics and Detector Meeting DESY HH,
March 2004LCWS Stanford Instrumentation of the Very Forward Region of a Linear Collider Detector Wolfgang Lohmann, DESY.
Instrumentation of the very forward region of the TESLA detector – summary of the Workshop on Forward Calorimetry and Luminosity Measurement, Zeuthen,
Diamond Detector Developments at DESY and Measurements on homoepitaxial sCVD Diamond Christian Grah - DESY Zeuthen 2 nd NoRHDia Workshop at GSI Thursday,
CVD Diamond Sensor Studies for the Beam Calorimeter of the ILC Detector K. Afanaciev 2, I.Emelianchik 2, Ch. Grah 1, E. Kouznetsova 1, W. Lange 1, W. Lohmann.
Polycrystalline CVD Diamonds for the Beam Calorimeter of the ILC C. Grah 1, U. Harder 1, H. Henschel 1, E. Kouznetsova 1, W. Lange 1, W. Lohmann 1, M.
2. December 2005Valencia Workshop Very Forward Region Instrumentation Wolfgang Lohmann, DESY Basic functions: - Hermeticity to small polar angles - Fast.
July 2006ALCWS Vancouver Very Forward Instrumentation of the Linear Collider Detector On behalf of the Wolfgang Lohmann, DESY.
Septembre SLAC BeamCal W. Lohmann, DESY BeamCal: ensures hermeticity of the detector to smallest polar angles -important for searches Serves as.
Karsten Büßer Instrumentation of the Forward Region of the TESLA Detector International Europhysics Conference on High Energy Physics Aachen, July 19th.
First results from silicon and diamond sensors K. Afanasiev 1, I. Emeliantchik 1, E. Kouznetsova 2, W. Lohmann 2, W. Lange 2 1 NC PHEP, Minsk 2 DESY Zeuthen.
Fast Beam Diagnostics at the ILC Using the Beam Calorimeter Christian Grah, Desy FCAL Workshop February Cracow.
TESLA R&D: Forward Region Achim Stahl DESY Zeuthen Cracow Tel Aviv Minsk Prague Colorado Protvino UC London Dubna.
3rd NoRDHia 1 TITLE INVESTIGATION OF DIAMOND SAMPLES UNDER HIGH DOSES OF ELECTROMAGNETIC IRRADIATION (at S-DALINAC) Wolfgang Lange, DESY Zeuthen.
HEP Tel Aviv University LumiCal (pads design) Simulation Ronen Ingbir FCAL Simulation meeting, Zeuthen Tel Aviv University HEP experimental Group Collaboration.
February, INP PAN FCAL Workshop in Cracow W. Lohmann, DESY The BCD (Baseline Configuration Document) The next calendar dates Where we are with FCAL.
Electrical features of diamond sensors D. Drachenberg, E. Kouznetsova, W. Lange, W. Lohmann.
The Luminosity Calorimeter Iftach Sadeh Tel Aviv University Desy ( On behalf of the FCAL collaboration ) June 11 th 2008.
1 LumiCal Optimization Simulations Iftach Sadeh Tel Aviv University Collaboration High precision design May 6 th 2008.
Lucia Bortko | Optimisation Studies for the BeamCal Design | | IFJ PAN Krakow | Page 1/16 Optimisation Studies for the BeamCal Design Lucia.
CVD Diamond Sensors for the Very Forward Calorimeter of a Linear Collider Detector K. Afanaciev, E. Kouznetsova, W. Lange, W. Lohmann.
Polycrystalline CVD Diamonds for the Beam Calorimeter of the ILC C.Grah ILC ECFA 2006 Valencia, 9 th November 2006.
October DESY PRC Instrumentation of the Very Forward Region of a Linear Collider Detector Univ. of Colorado, Boulder, AGH Univ., INP & Jagiell.
Fast and Precise Luminosity Measurement at the ILC Ch.Grah LCWS 2006 Bangalore.
Beamdiagnostics using BeamCal C.Grah FCAL Workshop, Paris,
September 2007SLAC IR WS Very Forward Instrumentation of the ILC Detector Wolfgang Lohmann, DESY Talks by M. Morse, W. Wierba, myself.
LumiCal background and systematics at CLIC energy I. Smiljanić, Vinča Institute of Nuclear Sciences.
1 LoI FCAL Takashi Maruyama SLAC SiD Workshop, SLAC, March 2-4, 2009 Contributors: SLAC M. BreidenbachFNALW. Cooper G. Haller K. Krempetz T. MarkiewiczBNLW.
Octobre 2007LAL Orsay Very Forward Instrumentation of the ILC Detector Wolfgang Lohmann, DESY.
FCAL Krakow meeting, 6. May LumiCal concept including the tracker R. Ingbir, P.Růžička, V. Vrba.
I nstrumentation of the F orward R egion Collaboration High precision design ECFA - Durham2004 University of Colorado AGH University, Cracow I nstitute.
Very Forward Instrumentation: BeamCal Ch. Grah FCAL Collaboration ILD Workshop, Zeuthen Tuesday 15/01/2008.
Manoj B. Jadhav Supervisor Prof. Raghava Varma I.I.T. Bombay PANDA Collaboration Meeting, PARIS – September 11, 2012.
FCAL Takashi Maruyama SLAC SiD Workshop, 15 – 17 November, 2010, Eugene, Oregon.
Initial proposal for the design of the luminosity calorimeter at a 3TeV CLIC Iftach Sadeh Tel Aviv University March 6th 2009
Diamond – Tungsten Calorimeter LCAL-group : K. Afanasiev, V. Drugakov, E. Kouznetsova, W. Lohmann, A. Stahl Workshop on Forward Calorimetry and Luminosity.
Univ. of Colorado, Boulder, AGH Univ., INP & Jagiell. Univ. Cracow,
The very forward region Tel-Aviv meeting summary
The Optimized Sensor Segmentation for the Very Forward Calorimeter
Testbeam measurements with diamond sensors. Preliminary results
Investigation of diamond sensors for calorimetry
Wolfgang Lohmann DESY (Zeuthen)
Report about “Forward Instrumentation” Issues
Radiation hard sensors for ILC forward calorimeter
CVD Diamond Sensors for the Very Forward Calorimeter of a Linear Collider Detector K. Afanaciev, D. Drachenberg, E. Kouznetsova, W. Lange, W. Lohmann.
CLIC luminosity monitoring/re-tuning using beamstrahlung ?
Diamond Measurements in Zeuthen
Presentation transcript:

Design Studies and Sensor Test for the Beam Calorimeter of the ILC Detector E. Kuznetsova DESY Zeuthen

a facility for precision measurements International Linear Collider (ILC) – why? e + e - √s = 500 GeV in ~2015 H f (Z, W - ) f (Z, W + ) -- e+e+ e-e- Z0Z0 -- ~ χ0χ0 ++ ~ ++ χ0χ0 LC (hep-ph/ )

International Linear Collider (ILC) √s [GeV]500 Charge per bunch, N2x10 10 Beam size,  x [nm] 655 Beam size,  y [nm] 5.7 Bunch length,  z [  m] 300 Luminosity, L [cm -2 s -1 ]2x10 34 Nominal parameters (Aug.2005) e + e -, e - e - (e ,  ) 90 GeV ≤ √s ≤ 500 GeV (1 TeV) polarized beams 2-20 mrad crossing angle

ILC Detector - Large Detector Concept (LDC) “Particle flow method” (PFLOW) : TPC + calorimetry  Ejet /E jet ≈ 30%/√E B = 4 T

Beamstrahlung at ILC N = 2x10 10 ;  x = 655 nm;  y = 5.7 nm n  = 1.26 (ILC) TESLA; z = 365 cm B = 4 T Per bunch 500 GeV: TESLA22 TeV 20 mrad crossing angle design 66 TeV ~20 mrad ~1 mrad

Very Forward Region of the LDC Detector hermeticity Luminosity measurements (LumiCal) Fast Beam diagnostics (BeamCal)

LumiCal and luminosity measurements Luminosity accuracy goal  L/L ~ 2x10 -4 if  min = 30 mrad  max = 75 mrad 1 year: ~10 9 events (  L/L) stat ~ Cross section calculation polar angle measurements ~ 2(  ) sys /  (  L/L) sys Si/W calorimeter (26-141) mrad

BeamCal: motivation Beam diagnostics: Low angle detection: ILC; z = 355 cm + vertical offset of 10nm ( ) mrad σ ~ 10 2 fb (SPS1a) σ ~ 10 6 fb -- e+e+ e-e- Z0Z0 -- ~ χ0χ0 ++ ~ ++ χ0χ0 e + e - e + e -   +  - 

BeamCal: requirements Diamond-Tungsten sandwich calorimeter High radiation hardness (up to 10 MGy/year) Small Moliere radius and high granularity Wide dynamic range

SiliconDiamond Band gap [eV] Resistivity, W×cm2.3× Breakdown field, V/cm3× Dielectric constant Energy/(e - -h pair), eV3.613 Average e - -h number per 100 mm (for MIP) Mobility, cm 2 /(V×s) e-e- 1350up to 4500 h480up to 3800 T.Behnke et al., 2001 Why diamond? Resistant enough to e/m radiation (at least for low energy) Comparison with silicon:

Simulation studies of the calorimeter performance TESLA Detector design Z - segmentation : tungsten 3.5 mm Layer = = 1 X0 diamond 0.5 mm (r,  ) - segmentation : tungsten absorber + -> R M ~ 1 cm diamond sensor cell size ~ 0.5 cm

Simulation Studies of the calorimeter performance Event – GeV e - Background – pairs from 1 bunch crossing (“Guinea-Pig”) Full detector simulation – BRAHMS (GEANT3) Statistics: 500 bunch crossings

Simulation studies: efficiency

Simulation studies: fake rate ~2% of “fake” e - of E > 50 GeV for the chosen parameters In 10% of bunch crossing a “high” energy e - occurs BG fluctuations The reconstruction is not ideal pure BG E> 20 GeV pure BG after reco

Simulation studies: energy resolution intrinsic  /E=22%/√E with BG (example)

Requirements from the simulation studies: Dynamic range – MIP/cm 2 Digitization - 10 bit (considered segmentation)

Sensor tests: pCVD diamonds Polycrystalline Chemical Vapour Deposition Diamonds Typical growth rate : ( 0.1 – 10 )  m/hr Si Defects at the grain boundaries Graphite phase presence Si, N impurities substrate side growth side

Sensor tests: samples Requirements: - stability under irradiation - linearity of response Samples: Fraunhofer IAF, Element Six First step - Fraunhofer IAF (Freiburg) : CVD diamond 12 x 12 mm and 200  m thickness Different wafers and different surface treatment (3 samples/group): #1 – substrate side polished; 300  m #2 – substrate removed; 200  m #3 – growth side polished; 300  m #4 – both sides polished; 300  m

0 < |V| < 500 V 0 < |F| < ~2 V/  m Shielded box Light tight N 2 flow Sensor tests: Current-Voltage characteristics + open circuit measurements: |I| < 0.05 pA for 0 < |V| < 500 V Diamond Keithley 487 HV N2N2

Sensor tests: Current-Voltage characteristics “ohmic” behaviour, “low” current “non-ohmic” behaviour, “high” current No correlation with group# (wafer, surface treatment) R ~ (  ) at F = 1 V/  m

Sensor tests: Charge Collection Distance (CCD) Polycrystalline material with large amount of charge traps Q induced < Q created  = Q induced /Q created CCD ≈  L L

Sensor tests: CCD measurements MIP: Q created /L= 36 e - /  m CCD = L x Q measured /Q created CCD[  m] = Q measured [e - ]/36 CCD range = f(wafer), but no correlation with surface treatment Fast measurements - in 2 minutes after the voltage applied…

Sensor tests: CCD vs dose Group#2 (wafer#2, cut substrate)Group#3 (wafer#3, untreated substrate) F = 1 V/  m Group#3 (wafer#3, untreated substrate)

Sensor tests: more samples! Fraunhofer sample Element Six I < 0.3 nA Stabilizes after ~20 Gy! CCD ~ 30  m dose rate influence…

Sensor tests: linearity test Hadronic beam, 3 & 5 GeV (CERN PS) Fast extraction mode ~ / ~10 ns ADC Diamond Scint.+PMT& signal gate 10 ns 17 s

Linearity test – relative intensity measurements + offline PMTs calibration + absolute intensity measurement ( Thermoluminescence dosimetry) wide intensity range PMT1, PMT2 Beam intensity “Relative Intensity” Beam intensity

Linearity test – particle flux estimation + absolute calibration for one of the runs 1 RI = (27.3±2.9) 10 3 MIP/cm 2 Linearity of the corrected PMT response (at a reduced range)

Linearity of the diamond response 30% deviation from a linear response for a particle fluence up to ~10 7 MIP/cm 2 The deviation is at the level of systematic errors of the fluence calibration E64 FAP2 Fraunhofer sampleElement Six sample y = p[0]x

diamond-tungsten sandwich design of the BeamCal is feasible For E e ~ √ s/2 an efficient detection is possible for most of  For lower E e :  > 15 mrad (  E /E) intr = 22%/√E;  E /E = f(BG)   ~ rad;  φ ~ rad - for low BG density Dynamic range MIP/cm 2 (TESLA) pCVD diamond – a promising sensor material A set of measurements is established to test the sensor quality A feedback to Fraunhofer IAF allows to improve quality We already have samples with CCD of ~30  m with a stable response with a ~linear response for a fluence up to 10 7 MIP/cm 2 Conclusions -> Sensor studies -> Simulation studies

Reserve

Simulation studies: efficiency N gen = 500 N reco = 521 E = 100 GeV

Simulation studies: energy resolution

Simulation studies: angular resolution

Simulations: Sr + diamond

CCD – irradiation studies – results Group #1 (substrate side polished). HV = 300V Group #2 (substrate side removed). HV = 200V

CCD – irradiation studies – results Group #3 (growth side polished). HV = 300V Group #4 (both sides polished). HV = 300V

Linearity test – PMT calibration 

Raman spectroscopy Resolution ~ 1 cm -1 Result = S(diam)/S(graphite)*1000