DEPFET detectors for future colliders. Activities at IFIC, Valencia Terceras Jornadas sobre la Participación Española en los Futuros Aceleradores Lineales.

Slides:



Advertisements
Similar presentations
Radiation damage in silicon sensors
Advertisements

Actividades de I+D en IGFAE/USC Pablo Vázquez (IGFAE-USC) IV JORNADAS SOBRE LA PARTICIPACIÓN ESPAÑOLA EN FUTUROS ACELERADORES LINEALES Madrid, 2-3 Diciembre.
1 Research & Development on SOI Pixel Detector H. Niemiec, T. Klatka, M. Koziel, W. Kucewicz, S. Kuta, W. Machowski, M. Sapor, M. Szelezniak AGH – University.
Development of an Active Pixel Sensor Vertex Detector H. Matis, F. Bieser, G. Rai, F. Retiere, S. Wurzel, H. Wieman, E. Yamamato, LBNL S. Kleinfelder,
CHARGE COUPLING TRUE CDS PIXEL PROCESSING True CDS CMOS pixel noise data 2.8 e- CMOS photon transfer.
The Origami Chip-on-Sensor Concept for Low-Mass Readout of Double-Sided Silicon Detectors M.Friedl, C.Irmler, M.Pernicka HEPHY Vienna.
Standalone VeloPix Simulation Jianchun Wang 4/30/10.
28 June 2002Santa Cruz LC Retreat M. Breidenbach1 SD – Silicon Detector EM Calorimetry.
Module Production for The ATLAS Silicon Tracker (SCT) The SCT requirements: Hermetic lightweight tracker. 4 space-points detection up to pseudo rapidity.
Performance of the DZero Layer 0 Detector Marvin Johnson For the DZero Silicon Group.
A new idea of the vertex detector for ILC Y. Sugimoto Nov
SPiDeR  First beam test results of the FORTIS sensor FORTIS 4T MAPS Deep PWell Testbeam results CHERWELL Summary J.J. Velthuis.
Hamburg, Marcel Trimpl, Bonn University A DEPFET pixel-based Vertexdetector for TESLA 55. PRC -MeetingHamburg, Mai 2003 M. Trimpl University.
Monolithic Pixels R&D at LBNL Devis Contarato Lawrence Berkeley National Laboratory International Linear Collider Workshop, LCWS 2007 DESY Hamburg, May.
Semi-conductor Detectors HEP and Accelerators Geoffrey Taylor ARC Centre for Particle Physics at the Terascale (CoEPP) The University of Melbourne.
IFIC projects for the ILC IFIC – Valencia J. Fuster, C. Lacasta, P. Modesto, M. Vos, C. Alabau, A. Faus- Golfe, J. Resta, I. Carbonell IFIC - INSTITUTO.
2. Super KEKB Meeting, DEPFET Electronics DEPFET Readout and Control Electronics Ivan Peric, Peter Fischer, Christian Kreidl Heidelberg University.
ECFA ILC Workshop, November 2005, ViennaLadislav Andricek, MPI für Physik, HLL DEPFET Project Status - in Summary Technology development thinning technology.
VI th INTERNATIONAL MEETING ON FRONT END ELECTRONICS, Perugia, Italy A. Dorokhov, IPHC, Strasbourg, France 1 NMOS-based high gain amplifier for MAPS Andrei.
10/26/20151 Observational Astrophysics I Astronomical detectors Kitchin pp
Vertex05, 8/11/05Jaap Velthuis, Bonn University DEPFET Status DEPFET Principle Readout modes Projects: –XEUS –WIMS –ILC ILC Testbeam results Summary &
Carlos Mariñas, IFIC, CSIC-UVEG DEPFET Technology for future colliders Carlos Mariñas IFIC-Valencia (Spain) 1 LCPS09, Ambleside.
Fully depleted MAPS: Pegasus and MIMOSA 33 Maciej Kachel, Wojciech Duliński PICSEL group, IPHC Strasbourg 1 For low energy X-ray applications.
11 Wish list for July May testbeam Keep It (Stupidly) Simple..
EPS-HEP 2015, Vienna. 1 Test of MPGD modules with a large prototype Time Projection Chamber Deb Sankar Bhattacharya On behalf of.
Fine Pixel CCD for ILC Vertex Detector ‘08 7/31 Y. Takubo (Tohoku U.) for ILC-FPCCD vertex group ILC vertex detector Fine Pixel CCD (FPCCD) Test-sample.
ILC VXD Review, Fermilab, October 23, 2007 Hans-Günther Moser, MPI für Physik DEPFET Devices Hans-Gunther Moser for the DEPFET Collaboration (
8 July 1999A. Peisert, N. Zamiatin1 Silicon Detectors Status Anna Peisert, Cern Nikolai Zamiatin, JINR Plan Design R&D results Specifications Status of.
Thin Silicon R&D for LC applications D. Bortoletto Purdue University Status report Hybrid Pixel Detectors for LC.
Technology Overview or Challenges of Future High Energy Particle Detection Tomasz Hemperek
LCWS08, Chicago, November 2008 Ladislav Andricek, MPI fuer Physik, HLL 1 DEPFET Active Pixel Sensors - Status and Plans - Ladislav Andricek for the DEPFET.
H.-G. Moser Max-Planck-Institut fuer Physik 1 st open meeting SuperBelle KEK Summary of PXD Session 1 Status of CAPSH. Hoedlmoser (Video)
Fig. 1: Cross section of a circular DEPMOS- FET pixel cell. Charges collected in the “in- ternal gate’ modulate the transistor current. DEPMOSFET team,
Radiation hardness of Monolithic Active Pixel Sensors (MAPS)
- Performance Studies & Production of the LHCb Silicon Tracker Stefan Koestner (University Zurich) on behalf of the Silicon Tracker Collaboration IT -
Jyly 8, 2009, 3rd open meeting of Belle II collaboration, KEK1 Charles University Prague Zdeněk Doležal for the DEPFET beam test group 3rd Open Meeting.
The Belle II DEPFET Pixel Detector
August DESY-HH VFCAL Report W. Lohmann, DESY Infrastructure for sensor diagnostics FE Electronics Development Sensor test facilities Laser Alignment.
SuperKEKB 3nd open meeting July 7-9, 2009 Hans-Günther Moser MPI für Physik Sensor and ASIC R&D Sensor Prototype Production: running, ASICs: Switcher,
TRACKING AND VERTEXING SUMMARY Suyong Choi Korea University.
Design and Technology of DEPFET Active Pixel Sensors for Future e+e- Linear Collider Experiments G. Lutz a, L. Andricek a, P. Fischer b, K. Heinzinger.
Position Sensitive Detector Conference, September 2005, LiverpoolGerhard Lutz 1 (Semiconductor) Pixel Detectors for charged particles (and other applications)
Daniel EsperanteIFIC – 13 Jun 2012 Electrónica para nuevos detectores de Belle-II e ILC.
Particle Physics School Colloquium, May C. Koffmane, MPI für Physik, HLL, TU Berlin  DEPFETs at ILC and Belle II  Module Concept  results with.
Infinipix DEPFETs (for the ATHENA project) Seeon, May 2014 Alexander Bähr MPE 1 Alexander Bähr Max-Planck-Institute f. extraterrestr. Physics.
A novel two-dimensional microstrip sensor with charge division readout M. Fernández, R. Jaramillo, F.J. Muñoz, I. Vila IFCA (CSIC-UC) D. Bassignana, M.
Oscar Alonso – Future Linear Colliders Spanish Network 2015 – XII Meeting - Barcelona, January 2015 O. Alonso, J. Canals, M. López, A. Vilà, A. Herms.
ADC values Number of hits Silicon detectors1196  6.2 × 6.2 cm  4.2 × 6.2 cm  2.2 × 6.2 cm 2 52 sectors/modules896 ladders~100 r/o channels1.835.
Highlights from the VTX session Marc Winter & Massimo Caccia R&D reports: – DEPFET (M. Trimpl) – CCD (S. Hillert) – UK-CMOS (J.Velthuis) – Continental-CMOS.
CMOS Pixels Sensor Simulation Preliminary Results and Plans M. Battaglia UC Berkeley and LBNL Thanks to A. Raspereza, D. Contarato, F. Gaede, A. Besson,
1 Characterization of Pilot Run Modules for the Belle II Pixel Detector Felix Müller Max-Planck-Institut für Physik IMPRS Young Scientist Workshop Ringberg.
Low Mass, Radiation Hard Vertex Detectors R. Lipton, Fermilab Future experiments will require pixelated vertex detectors with radiation hardness superior.
Pixel Sensors for the Mu3e Detector Dirk Wiedner on behalf of Mu3e February Dirk Wiedner PSI 2/15.
TILC08, Sendai, March DEPFET Active Pixel Sensors for the ILC Marcel Vos for the DEPFET Collaboration (
H.-G. Moser Max-Planck-Institut for Physics, Munich Vertex07 Lake Placid, NY 9/25/2007 DEPFET Active Pixel Detectors H.-G. Moser on behalf of the DEPFET.
Clear Performance and Demonstration of a novel Clear Concept for DEPFET Active Pixel Sensors Stefan Rummel Max-Planck-Institut für Physik – Halbleiterlabor.
Multiple Scattering and Sensor Thickness Preserving track extrapolation accuracy to bulk of particles at low momentum requires ultra-thin sensors and mechanical.
ASICs1 Drain Current Digitizer Chip (DCD) Status and Future Plans.
Testsystems PXD6 - testing plans overview - by Jelena NINKOVIC Hybrid Boards for PXD6 - by Christian KOFFMANE Source measurements on DEPFET matrices using.
 Silicon Vertex Detector Upgrade for the Belle II Experiment
Kröhnke, 14 November 2012 FCAL Collaboration Meeting Sergej Schuwalow
First Testbeam results
DEPFET Active Pixel Sensors (for the ILC)
The Belle II Vertex Pixel Detector (PXD)
Rita De Masi IPHC-Strasbourg on behalf of the IPHC-IRFU collaboration
Lars Reuen, 7th Conference on Position Sensitive Devices, Liverpool
SCIENTIFIC CMOS PIXELS
Yasuhiro Sugimoto KEK 17 R&D status of FPCCD VTX Yasuhiro Sugimoto KEK 17
Vertex Detector Overview Prototypes R&D Plans Summary.
TCAD Simulation and test setup For CMOS Pixel Sensor based on a 0
Presentation transcript:

DEPFET detectors for future colliders. Activities at IFIC, Valencia Terceras Jornadas sobre la Participación Española en los Futuros Aceleradores Lineales de Partículas Universitat de Barcelona C. Mariñas, IFIC, CSIC-UVEG Carlos Mariñas, IFIC, CSIC-UVEG

Outlook General requirements for future colliders DEPFET: Fundamentals DEPFET: Basics Characterization: Matrices: PXD4/PXD5/PXD6 production Single Pixel Test Beam Data analysis ILC simulation (see M. Vos talk) Thermal studies ILC/SuperBelle DEPFET thermal mock-up Simulation DEPFET activities at IFIC Pixel detectors for future colliders IFIC in the DEPFET Collaboration Conclusions C. Mariñas, IFIC, CSIC-UVEG

Vertexing in future colliders C. Mariñas, IFIC, CSIC-UVEG  This requirements impose unprecedented constraints on the detector: High granularity Fast read-out Low material budget Low power consumption  This requirements impose unprecedented constraints on the detector: High granularity Fast read-out Low material budget Low power consumption  Vertexing in future colliders requires excellent vertex reconstruction and efficient heavy quark flavour tagging using low momentum tracks DEPFET  Measurements made on realistic DEPFET prototypes have demonstrated that the concept is one of the principal candidates to meet these challenging requirements DEPFET  Measurements made on realistic DEPFET prototypes have demonstrated that the concept is one of the principal candidates to meet these challenging requirements

DEPFET principle C. Mariñas, IFIC, CSIC-UVEG  Each pixel is a p-channel FET on a completely depleted bulk  A deep n-implant creates a potential minimum for electrons under the gate (internal gate)  Signal electrons accumulate in the internal gate and modulate the transistor current (400pA/e - )  Accumulated charge can be removed by a clear contact  Each pixel is a p-channel FET on a completely depleted bulk  A deep n-implant creates a potential minimum for electrons under the gate (internal gate)  Signal electrons accumulate in the internal gate and modulate the transistor current (400pA/e - )  Accumulated charge can be removed by a clear contact Fully depleted Large signal Fast signal collection Low capacitance, internal amplification Low noise Transistor ON only during readout Low power Complete clear No reset noise Fully depleted Large signal Fast signal collection Low capacitance, internal amplification Low noise Transistor ON only during readout Low power Complete clear No reset noise

Introducing the Valencia’s set up Faraday cage PC for data acquisition Stack of power supplies Laser Motorstages XYZ Complete system for air and liquid cooling ◦Cooling blocks ◦Aluminium coils Pulse generator C. Mariñas, IFIC, CSIC-UVEG

Matrix characterization C. Mariñas, IFIC, CSIC-UVEG  Full electrical optimization of matrices: This implies scans over a wide range of the operating voltages to achieve the best signal-to-noise ratio. Clear High/Low Gate ON/OFF Back Bulk Cleargate Source  Full electrical optimization of matrices: This implies scans over a wide range of the operating voltages to achieve the best signal-to-noise ratio. Clear High/Low Gate ON/OFF Back Bulk Cleargate Source  Calibration of the system using radioactive sources Gain of the system ENC  Calibration of the system using radioactive sources Gain of the system ENC  Laser scans: Charge collection uniformity

Already tested at IFIC PXD4 CLGClocked Cleargate NHE 38x30μm 2 PXD5 CCGCommon Cleargate LE 32x24μm 2 Future PXD6? C3GCapacitive Coupled Cleargate 24x24μm 2 ILC design C. Mariñas, IFIC, CSIC-UVEG

DEPFET Single-pixel (under construction) D1 D2 S G1 G2Cl Clg Blk Clg C. Mariñas, IFIC, CSIC-UVEG Inner structureSet-up Better understanding of new structures Different geometries (L- gate) Implants Better understanding of new structures Different geometries (L- gate) Implants Direct access to the system’s parameters Complete clear Charge collection Noise Direct access to the system’s parameters Complete clear Charge collection Noise

Test Beam C. Mariñas, IFIC, CSIC-UVEG

Test Beam: Our role C. Mariñas, IFIC, CSIC-UVEG Full electrical characterization of one DUT Participate in the assembly and allignment of the telescope Parallel set-up in control room Analysis of data Test Beam Coordinators 2008 and 2009 (M.Vos) BEAM 120 GeV ∏ x y z

Test Beam: Measurements Voltage scans: Cross-check optimal settings ◦V Bias to the wafer V ◦V Edge ◦V ClearHigh Angular scan: Resolution vs. Cluster size ◦-5, -4, -3, -2, -1.5, -1, -0.5, 0, 0.5, 1, 1.5, 2, 3, 4, 5, 6, 9, 12, 18, 36 Beam energy scan: Separation “multi-scattering- intrinsic resolution” ◦20, 40, 60, 80, 120 GeV Large statistics ◦Charge collection uniformity ◦3 Mevents in nominal conditions C. Mariñas, IFIC, CSIC-UVEG

T.B. Data analysis C. Mariñas, IFIC, CSIC-UVEG d0 (32x24) d1 (32x24) d2 (24x24) d3* (32x24) d4 (32x24) d5 (32x24) Sig3x3(ADU) Noise (ADU)12,713,412,713,412,813,2 SNR SeedSignal(A DU) 69%56%59%61%63%64% ENC (e - ) g q (pA/e - ) Preliminary Seed signal Preliminary Residual  MS  Tel  Int, m) Beam Energy (GeV) Distance (m) Entries  total =2,5m

Thermal studies: Simulation and measurements C. Mariñas, IFIC, CSIC-UVEG First DEPFET thermal mock-up Thermal simulation

C. Mariñas, IFIC, CSIC-UVEG  Thermal measurements  Influence of conduction  T of cooling blocks  Bump bonding  Influence of convection  Air speed  Air temperature  Study of new materials  Thermal measurements  Influence of conduction  T of cooling blocks  Bump bonding  Influence of convection  Air speed  Air temperature  Study of new materials Power (W) Temperature (ºC) Air speed (m/s) Temperature (ºC) T normalized (K/mm 2 ) Power (W) New materials

C. Mariñas, IFIC, CSIC-UVEG  Thermal simulation  Model implemented in SolidWorks for future mechanical studies  ANSYS studies calibrated with real data  Thermal simulation  Model implemented in SolidWorks for future mechanical studies  ANSYS studies calibrated with real data

A couple of movies… C. Mariñas, IFIC, CSIC-UVEG Switching mechanism is introduced Influence of air and liquid cooling studies

Conclusions Vertexing in Future Colliders ◦Very hard conditions  Radiation (10MRad for SuperBelle)  Background  Reduced material budget  Unprecedented granularity  Power consumption and heat dissipation ◦Improvement of the detector’s performance is needed New generation of pixel detectors try to cope with this requirements DEPFET: One of the most promising technologies for vertexing and tracking C. Mariñas, IFIC, CSIC-UVEG

Conclusions: DEPFET in Valencia C. Mariñas, IFIC, CSIC-UVEG Matrix characterization ◦2 different generations characterized ◦Full electrical optimization ◦Calibration ◦Charge collection uniformity ◦Working on Single Pixel set-up Test Beam ◦Optimization of DUT ◦Instalation and alignment of the telescope ◦Data analysis Thermal studies ◦DEPFET thermal mock-up ◦Study of new materials for better cooling ◦Influence of air/liquid cooling ◦Simulation

Backup slides C. Mariñas, IFIC, CSIC-UVEG

Mechanics 1. Support structures: ◦FEA models of mechanical properties  Natural frequencies  Rigidity  Stability  Deformations ◦Validation with mock-up 2. Module: ◦Simulations using FEA: ( Finite Element Analysis )  Mechanical effects: Strenght of module  Thermal effects: Cooling ◦Validation with prototypes C. Mariñas, IFIC, CSIC-UVEG

Competitors for SuperBelle Strip detectors (DSSD) Shorter strips Fast readout (higher noise) Cannot be thinned Hybrid pixel detectors (ATLAS type) Good readout speed and granularity Too much material Pixel detectors with frame readout High granularity Low mass (50 microns) Slow frame readout (rolling shutter) C. Mariñas, IFIC, CSIC-UVEG DEPFET

Competitors for ILC CCD Small signal Cryogenic operation Radiation damage (trapping) CMOS sensors: MAPS/CAPS Only small chips possible Dead material in periphery Silicon On Insulator (3D integration) Thick depleted sensor (large signal, fast charge collection) Only small chips possible Back-gate effect (depletion voltage couples to FET gate) C. Mariñas, IFIC, CSIC-UVEG

Double pixel structure C. Mariñas, IFIC, CSIC-UVEG

Gain and noise Ba-133 (30keV -ray) → ADC Units Cd-109 (22keV -ray) → ADC Units E (keV) ADU FIT y=a+ bx Slope=Gain b=12.5 ADC/keV NoiseGainEnergy to create e - h C. Mariñas, IFIC, CSIC-UVEG

S/N for a MIP 1.- ATLAS supposition: 1 MIP → pairs e - h in 285μm of Si 2.- Our DEPFET has 450μm of Si 3.- The scale factor between Ba keV  and a MIP is: 4.- The S/N of 30keV Ba-133  ray scaled to a MIP: C. Mariñas, IFIC, CSIC-UVEG

Noise in current 1.- ADC dynamic range: 2 V – 14 bits -> 2.- trans-impedance amplifier gain = 1 V / 50 A ADC counts of noise C. Mariñas, IFIC, CSIC-UVEG

Introducing the device Switchers A (Gate) and B (Clear) for CLG A-GATEB-CLEAR CURO C. Mariñas, IFIC, CSIC-UVEG

CLG vs CCG V Cleargate-Low V Cleargate-High Amp/mV Time/ms V Clear-High V Clear-Low Clocked- Cleargate V Common-Cleargate V Clear-High V Clear-Low Common- Cleargate C. Mariñas, IFIC, CSIC-UVEG

Effect on spectrum #Entries ADU Signal peak Incomplete clear Noise peak Leackage Current Background C. Mariñas, IFIC, CSIC-UVEG

Amplifiers OUT IN - 5V 1.8V1.3V - 3.2V - 8.2V V substr 39kΩ I in AD8015 AD8129 5V14V +IN -IN REF FB >2V 2kΩ18kΩ 6mV R10 R50 150p F 7V - 7V C. Mariñas, IFIC, CSIC-UVEG

10V C. Mariñas, IFIC, CSIC-UVEG

Double pixel structure Actual size of two pixels Double pixel cell 33 x 47 µm 2 C. Mariñas, IFIC, CSIC-UVEG

V DRAIN V GATE GND 55 Fe Light PulsersSequencer ShaperADC PC C. Mariñas, IFIC, CSIC-UVEG

CDS Correlated Double Sampling Scheme C. Mariñas, IFIC, CSIC-UVEG