M. Szelezniak1PXL Sensor and RDO review – 06/23/2010 STAR PXL Sensors Overview.

Slides:



Advertisements
Similar presentations
STAR Pixel Detector Phase-1 testing. 22 Testing interrupted LBNL-IPHC 06/ LG Lena Weronika Szelezniak born on May 30, 2009 at 10:04 am weighing.
Advertisements

1 Annealing studies of Mimosa19 & radiation hardness studies of Mimosa26 Dennis Doering* 1, Samir Amar-Youcef 1,3,Michael Deveaux 1, Melissa Domachowski.
Random Telegraph Signal (RTS) in CMOS Monolithic Active Pixel Sensors (MAPS) for charged particle tracking. Outline Reminder: The operation principle of.
Development of an Active Pixel Sensor Vertex Detector H. Matis, F. Bieser, G. Rai, F. Retiere, S. Wurzel, H. Wieman, E. Yamamato, LBNL S. Kleinfelder,
6 th International Conference on Position Sensitive Detectors, Leicester 11/09/2002 Yu.Gornushkin Outline: G. Claus, C.
L. Greiner1SLAC Test Beam 03/17/2011 STAR LBNL Leo Greiner, Eric Anderssen, Howard Matis, Thorsten Stezelberger, Joe Silber, Xiangming Sun, Michal Szelezniak,
LBNL Michal Szelezniak, Eric Anderssen, Leo Greiner, Thorsten Stezelberger, Joe Silber, Xiangming Sun, Chinh Vu, Howard Wieman UTA Jerry Hoffman, Jo Schambach.
Research and Development for the HFT at STAR Leo Greiner BNL DAC 03/15/2006.
L. Greiner1PXL Sensor and RDO review – 06/23/2010 STAR Heavy Flavor Tracker Overview With parameters pertinent to the PXL Sensor and RDO design.
Status of the Micro Vertex Detector M. Deveaux, Goethe University Frankfurt for the CBM-MVD collaboration.
Development of pixel detectors with integrated signal processing for the Vertex Detector in the STAR experiment at the RHIC collider PhD Thesis defense.
15-17 December 2003ACFA workshop, Mumbai - A.Besson R&D on CMOS sensors Development of large CMOS Sensors Characterization of the technology without epitaxy.
1 Improved Non-Ionizing Radiation Tolerance of CMOS Sensors Dennis Doering 1 *, Michael Deveaux 1, Melissa Domachowski 1, Michal Koziel 1, Christian Müntz.
Ultimate Design Review G. Bertolone, C. Colledani, A. Dorokhov, W. Dulinski, G. Dozière, A. Himmi, Ch. Hu-Guo, F. Morel, H. Pham, I. Valin, J. Wang, G.
Leo Greiner IPHC testing Sensor and infrastructure testing at LBL. Capabilities and Plan.
X,Sun1USTC discussion, Oct 15, 2010 STAR STAR Heavy Flavor Tracker Upgrade --Status of PXL Detector Xiangming Sun Lawrence Berkeley National Lab L. Greiner,
ULTIMATE Design Review Outline  STAR Pixel Sensor Evolution  MIMOSA-26 Design  ULTIMATE Design & Optimisation  Pixel, Discriminator, Auxilliary Functional.
X,Sun1STAR Regional Meeting, Oct 23, 2010, SDU STAR STAR Heavy Flavor Tracker Upgrade --Status of PXL Detector Xiangming Sun( 孙向明 ) Lawrence Berkeley National.
HFT PIXEL Detector Pre-practice CDR-1 Review 3-Sept Wieman 1.
Leo Greiner IPHC meeting HFT PIXEL DAQ Prototype Testing.
07 October 2004 Hayet KEBBATI -1- Data Flow Reduction and Signal Sparsification in MAPS Hayet KEBBATI (GSI/IReS)
1 PIXEL H. Wieman HFT CDO LBNL Feb topics  Pixel specifications and parameters  Pixel silicon  Pixel Readout uSTAR telescope tests 
VI th INTERNATIONAL MEETING ON FRONT END ELECTRONICS, Perugia, Italy A. Dorokhov, IPHC, Strasbourg, France 1 NMOS-based high gain amplifier for MAPS Andrei.
Phase-1 Design. i PHC Phase /04/2008 System Overview Clock, JTAG, sync marker and power supply connections Digital output.
Leo Greiner TC_Int1 Sensor and Readout Status of the PIXEL Detector.
1 Radiation damage effects in Monolithic Active Pixel Sensors Implemented in an 0.18µm CMOS process Dennis Doering, Goethe-University Frankfurt am Main.
CAARI 2008 August 10-15, 2008, Fort Worth, Texas, USA STAR Vertex Detector Upgrade – HFT PIXEL Development Outline: Heavy Flavor Tracker at STAR PIXEL.
Leo Greiner IPHC DAQ Readout for the PIXEL detector for the Heavy Flavor Tracker upgrade at STAR.
Fully depleted MAPS: Pegasus and MIMOSA 33 Maciej Kachel, Wojciech Duliński PICSEL group, IPHC Strasbourg 1 For low energy X-ray applications.
1 An introduction to radiation hard Monolithic Active Pixel Sensors Or: A tool to measure Secondary Vertices Dennis Doering*, Goethe University Frankfurt.
ALICE Inner Tracking System at present 2 2 layers of hybrid pixels (SPD) 2 layers of silicon drift detector (SDD) 2 layers of silicon strips (SSD) MAPs.
IPHC-LBNL meeting 3-5 April 2008 Radiation damage in the STAR environment and performance of MAPS sensors Compilation of different test results mostly.
LEPSI ir e s MIMOSA 13 Minimum Ionising particle Metal Oxyde Semi-conductor Active pixel sensor GSI Meeting, Darmstadt Sébastien HEINI 10/03/2005.
Michal Szelezniak – LBL-IPHC meeting – May 2007 Prototype HFT readout system Telescope prototype based on three Mimostar2 chips.
CEA DSM Irfu 20 th october 2008 EuDet Annual Meeting Marie GELIN on behalf of IRFU – Saclay and IPHC - Strasbourg Zero Suppressed Digital Chip sensor for.
Recent developments on Monolithic Active Pixel Sensors (MAPS) for charged particle tracking. Outline The MAPS sensor (reminder) MIMOSA-22, a fast MAPS-sensor.
Strasbourg, France, 17 December, 2004, seminairGrzegorz DEPTUCH  MAPS technology decoupled charge sensing and signal transfer (improved radiation.
J. Crooks STFC Rutherford Appleton Laboratory
Monolithic Active Pixel Sensors (MAPS) News from the MIMOSA serie Pierre Lutz (Saclay)
Valerio Re, Massimo Manghisoni Università di Bergamo and INFN, Pavia, Italy Jim Hoff, Abderrezak Mekkaoui, Raymond Yarema Fermi National Accelerator Laboratory.
Technology Overview or Challenges of Future High Energy Particle Detection Tomasz Hemperek
Thanushan Kugathasan, CERN Plans on ALPIDE development 02/12/2014, CERN.
26 Apr 2009Paul Dauncey1 Digital ECAL: Lecture 2 Paul Dauncey Imperial College London.
Irfu saclay Development of fast and high precision CMOS pixel sensors for an ILC vertex detector Christine Hu-Guo (IPHC) on behalf of IPHC (Strasbourg)
Radiation hardness of Monolithic Active Pixel Sensors (MAPS)
Sensor testing and validation plans for Phase-1 and Ultimate IPHC_HFT 06/15/ LG1.
A Fast Monolithic Active Pixel Sensor with in Pixel level Reset Noise Suppression and Binary Outputs for Charged Particle Detection Y.Degerli 1 (Member,
Vertex 2008 July 28–August 1, 2008, Utö Island, Sweden CMOS pixel vertex detector at STAR Michal Szelezniak on behalf of: LBNL: E. Anderssen, L. Greiner,
M. Deveaux, CBM-Collaboration-Meeting, 25 – 28. Feb 2008, GSI-Darmstadt Considerations on the material budget of the CBM Micro Vertex Detector. Outline:
Improvement of ULTIMATE IPHC-LBNL September 2011 meeting, Strasbourg Outline  Summary of Ultimate test status  Improvement weak points in design.
Rutherford Appleton Laboratory Particle Physics Department G. Villani CALICE MAPS Siena October th Topical Seminar on Innovative Particle and.
On a eRHIC silicon detector: studies/ideas BNL EIC Task Force Meeting May 16 th 2013 Benedetto Di Ruzza.
Leo Greiner IPHC beam test Beam tests at the ALS and RHIC with a Mimostar-2 telescope.
A. Dorokhov, IPHC, Strasbourg, France 1 Description of pixel designs in Mimosa22 Andrei Dorokhov Institut Pluridisciplinaire Hubert Curien (IPHC) Strasbourg,
ULTIMATE: a High Resolution CMOS Pixel Sensor for the STAR Vertex Detector Upgrade Christine Hu-Guo on behalf of the IPHC (Strasbourg) CMOS Sensors group.
-1-CERN (11/24/2010)P. Valerio Noise performances of MAPS and Hybrid Detector technology Pierpaolo Valerio.
MIMO  3 Preliminary Test Results. MIMOSTAR 2 16/05/2007 MimoStar3 Status Evaluation of MimoStar2 chip  Test in Laboratory.
X,Sun1CERN meeting, May 29, 2011 STAR STAR Heavy Flavor Tracker Upgrade --PXL Detector Xiangming Sun Lawrence Berkeley National Lab L. Greiner, H. Matis.
Eleuterio SpiritiILC Vertex Workshop, April On pixel sparsification architecture in 130nm STM technology ILC Vertex Workshop April 2008 Villa.
MISTRAL & ASTRAL: Two CMOS Pixel Sensor Architectures dedicated to the Inner Tracking System of the ALICE Experiment R&D strategy with two main streams.
Investigating latchup in the PXL detector Outline: What is latchup? – the consequences and sources of latchup – techniques to reduce latchup sensitivity.
M. TWEPP071 MAPS read-out electronics for Vertex Detectors (ILC) A low power and low signal 4 bit 50 MS/s double sampling pipelined ADC M.
LBNL Eric Anderssen, Leo Greiner, Thorsten Stezelberger, Joe Silber, Xiangming Sun, Michal Szelezniak, Chinh Vu, Howard Wieman UTA Jerry Hoffman, Jo Schambach.
Fast Full Scale Sensors Development IPHC - IRFU collaboration MIMOSA-26, EUDET beam telescope Ultimate, STAR PIXEL detector Journées VLSI 2010 Isabelle.
Irfu saclay CMOS Pixel Sensor Development: A Fast Readout Architecture with Integrated Zero Suppression Christine HU-GUO on behalf of the IRFU and IPHC.
Pixel Sensors for the Mu3e Detector Dirk Wiedner on behalf of Mu3e February Dirk Wiedner PSI 2/15.
Further improvement of the TC performances Marie GELIN on behalf of IPHC - Strasbourg and IRFU – Saclay Investigation of a new substrate (High Resistivity)
3D CMOS monolithic 3-bit resolution pixel sensor with fast digital pipelined readout Olav Torheim, Yunan Fu, Christine Hu-Guo, Yann Hu, Marc Winter.
CMOS pixel sensors & PLUME operation principles
Rita De Masi IPHC-Strasbourg on behalf of the IPHC-IRFU collaboration
Presentation transcript:

M. Szelezniak1PXL Sensor and RDO review – 06/23/2010 STAR PXL Sensors Overview

M. Szelezniak2PXL Sensor and RDO review – 06/23/2010 STAR Sensor Requirements Sensor requirements (consistent with IPHC development direction) ~2 cm x 2 cm (1 reticle) size. Pixel size < 30 µm. Integration time of ≤ 200 µs for L = 8 x cm -2 s -1 Power dissipation ≤ 170 mW/cm 2 (air cooling) Binary output with remote threshold adjustment Efficiency of ≥ 95% for MIPs with a simultaneous accidental noise rate of ≤ Maintain efficiency and accidental rate after radiation exposure of 90 kRad and MeV n eq / cm 2. ≤ 4 LVDS output channels (ladder space) Remote configuration

M. Szelezniak3PXL Sensor and RDO review – 06/23/2010 STAR Talk Outline IPHC Principle of operation Readout speed and integration time Radiation hardness PXL sensors development path Current generation of sensors Characteristics Testing results Next generation of sensors Sensor interface High resistivity substrate

M. Szelezniak4PXL Sensor and RDO review – 06/23/2010 STAR IPHC Principle of operation Readout speed and integration time Radiation hardness PXL sensors development path Current generation of sensors Characteristics Testing results Next generation of sensors Sensor interfaces High resistivity substrate

M. Szelezniak5PXL Sensor and RDO review – 06/23/2010 STAR Institut Pluridisciplinaire Hubert Curien IPHC-DRS (former IRES/LEPSI) proposed using MAPS for high energy physics in 1999 CMOS & ILC group today –6 physists –9 microcircuit designers –6 test engineers –7 PhD students CNRS - IPHC, Strasbourg-Cronenbourg More than 30 prototypes developed – several pixel sizes and architectures (simple 3-transistor cells, pixels with in-pixel amplifiers and CDS processing) – different readout strategies (sensors operated in current and voltage mode, analog and digital output) – Large variety of prototype sizes (from several hundreds of pixels up to 1M pixel prototype with full-reticule size) MIMOSA (Minimum Ionizing particle MOS Active sensor)

M. Szelezniak6PXL Sensor and RDO review – 06/23/2010 STAR Monolithic Active Pixel Sensors Standard commercial CMOS technology Room temperature operation Sensor and signal processing are integrated in the same silicon wafer Signal is created in the low-doped epitaxial layer (typically ~10-15 μm) → MIP signal is limited to <1000 electrons Charge collection is mainly through thermal diffusion (~100 ns), reflective boundaries at p-well and substrate → cluster size is about ~10 pixels (20-30 μm pitch)‏ 100% fill-factor Fast readout Proven thinning to 50 micron MAPS pixel cross-section (not to scale)‏

M. Szelezniak7PXL Sensor and RDO review – 06/23/2010 STAR Charge Sharing and Cluster Size Based on tests of several different prototypes S/N>12 allows detection efficiency >99.6% MimoSTAR2 test results (30 μm pixel pitch)

M. Szelezniak8PXL Sensor and RDO review – 06/23/2010 STAR MAPS Integration Time = Readout Time Typical sensor readout –Raster scan –Charge integration time = array readout time –Multiplexed sub-arrays to decrease integration time Column parallel readout architecture –All columns readout in parallel and then multiplexed to one output –Charge integration time = column readout time

M. Szelezniak9PXL Sensor and RDO review – 06/23/2010 STAR From Analog to Binary Readout Digital readout – offers increased speed but requires on-chip discriminators or ADCs and increased S/N for on-chip signal processing Analog readout – simpler architecture but slower readout

M. Szelezniak10PXL Sensor and RDO review – 06/23/2010 STAR MAPS – Ionizing Radiation

M. Szelezniak11PXL Sensor and RDO review – 06/23/2010 STAR MAPS – Non-ionizing Radiation

M. Szelezniak12PXL Sensor and RDO review – 06/23/2010 STAR IPHC Principle of operation Readout speed and integration time Radiation hardness PXL sensors development path Current generation of sensors Characteristics Testing results Next generation of sensors Sensor interfaces High resistivity substrate

M. Szelezniak13PXL Sensor and RDO review – 06/23/2010 STAR PXL Sensors Development Path Pixel Sensors CDS ADC Data sparsification readout to DAQ analog signals Complementary detector readout MimoSTAR sensors 4 ms integration time PXL final sensors (Ultimate) < 200 μs integration time analog digital digital signals Disc. CDS Phase-1 sensors 640 μs integration time Sensor and RDO Development Path 1 2 3

M. Szelezniak14PXL Sensor and RDO review – 06/23/2010 STAR Current Generation of Sensors Phase-1 prototype Architecture based on Mimosa22 AMS-C35B4/OPTO which uses 4 metal- and 2 poly- layers 14 μm epitaxial layer Reticle size (~ 4 cm²) Pixel pitch 30 μm ~ 410 k pixels Column parallel readout Column discriminators Binary readout of all pixels Data multiplexed onto 4 LVDS 160 MHz Integration time 640 μs Functionality tests and yield look very good. Measured ENC is 15 e-. Beam test to measure MIP efficiency planned for Phase-2 prototype Small mask adjustments to improve discriminator threshold dispersion

M. Szelezniak15PXL Sensor and RDO review – 06/23/2010 STAR Phase1/2 Testing Results Discriminator transfer functions: Phase-1 FPN 0.6 mV to 1 mV temporal noise mV Phase-2 FPN ~0.5 mV temporal noise ~0.9 mV 55 Fe calibrations: noise ~14 e ─ ADC counts Threshold (mV) Column # Row # 1010 counts

M. Szelezniak16PXL Sensor and RDO review – 06/23/2010 STAR Phase 1 vs. Phase 2 In Phase-2 the magnitude of discriminator threshold variations is smaller than in Phase-1. Phase-1 chip B6 Phase-2 chip A2 Our test results feed back to IPHC designs to improve sensor performance

M. Szelezniak17PXL Sensor and RDO review – 06/23/2010 STAR Next Generation PXL Sensor Design based on Mimosa26 architecture Reticle size (~ 4 cm²) Pixel pitch 20.7 μm (recent change) 890 k pixels Reduced power dissipation Vdd: 3.0 V Optimized pixel pitch vs. Non-ionising radiation tolerance Estimated power consumption ~134 mW/cm² Short integration time μs Improved pixel architecture Optimized discriminator timing Improved threshold uniformity on-chip zero suppression 2 LVDS data 160 MHz Zero suppression circuitry (SUZE)

M. Szelezniak18PXL Sensor and RDO review – 06/23/2010 STAR Mimosa26

M. Szelezniak19PXL Sensor and RDO review – 06/23/2010 STAR On-chip Zero Suppression

M. Szelezniak20PXL Sensor and RDO review – 06/23/2010 STAR Data Format After Zero Suppression

M. Szelezniak21PXL Sensor and RDO review – 06/23/2010 STAR PXL Sensor Testability

M. Szelezniak22PXL Sensor and RDO review – 06/23/2010 STAR Phase1 and Final PXL Sensor Interface Phase 1 and Phase 2Final PXL sensor Inputs LVDS/CMOS CLK JTAG: TCK, TMS, TDI, TDO, Reset START, SPEAK Vlcp (analog reference voltage) Outputs 8 x analog output 4 x LVDS2 x LVDS 16 x LVCMOS(?) LAST_ROW CLKD Test pad1, test pad2 DAC test pads (including Vref1, Vref2) Required “ladder” interface Required testing interface

M. Szelezniak23PXL Sensor and RDO review – 06/23/2010 STAR IPHC Principle of operation Readout speed and integration time Radiation hardness PXL sensors development path Current generation of sensors Characteristics Testing results Next generation of sensors Sensor interfaces High resistivity substrate

M. Szelezniak24PXL Sensor and RDO review – 06/23/2010 STAR New Prototype on High Resistivity Substrate

M. Szelezniak25PXL Sensor and RDO review – 06/23/2010 STAR Sensor performance with HR substrate

M. Szelezniak26PXL Sensor and RDO review – 06/23/2010 STAR Summary Sensor performance satisfies requirements Sensors design at IPHC is on schedule High resistivity substrate dramatically improves S/N and removes radiation hardness issues The design of the final PXL sensor will benefit from the ongoing tests of Mimosa22HR and latch up tests of Mimosa22HR and memory prototypes planned later this year Phase-2 will be used for ladder prototyping We will build a 3-sector detector prototype equipped with Phase-2 sensors to test it at STAR (2012)

M. Szelezniak27PXL Sensor and RDO review – 06/23/2010 STAR Backup slides

M. Szelezniak28PXL Sensor and RDO review – 06/23/2010 STAR Phase1/2 testing results The Phase-1 performance tested on several chips1 demonstrated FPN ranging from 0.6 mV to 1 mV and temporal noise estimated at mV.

M. Szelezniak29PXL Sensor and RDO review – 06/23/2010 STAR MAPS principle of operation Continuous reverse bias (self-biased) Classical diode with reset Reset noise, offset No reset noise, no offset read

M. Szelezniak30PXL Sensor and RDO review – 06/23/2010 STAR Sensor/RDO Requirements by generation Mimostar–2 30 µm pixel, 128 x 128 array 1.7 ms integration time 1 analog output Mimostar–3 30 µm pixel, 320 x 640 array 2.0 ms integration time 2 analog outputs Phase–1/2 30 µm pixel, 640 x 640 array 640 µs integration time, CDS 4 binary digital outputs Final (Ultimate) 18.4 µm pixel, 1024 x 1088 array ≤ 200 µs integration time, CDS, zero suppression 2 digital outputs (addresses) SensorSensor RDO 50 MHz readout clock JTAG interface, control infrastructure ADCs, FPGA CDS & cluster finding zero suppression ≤ 4 sensor simultaneous readout 160 MHz readout clock JTAG interface, control infrastructure zero suppression 120 sensor simultaneous readout 160 MHz readout clock JTAG interface, control infrastructure 400 sensor simultaneous readout (full system) DONE PROTOTYPED Gen