Computational Photography: Sampling + Reconstruction Connelly Barnes Slides from Alexei Efros and Steve Marschner.

Slides:



Advertisements
Similar presentations
Motion illusion, rotating snakes. Slide credit Fei Fei Li.
Advertisements

CS 691 Computational Photography Instructor: Gianfranco Doretto Frequency Domain.
Multiscale Analysis of Images Gilad Lerman Math 5467 (stealing slides from Gonzalez & Woods, and Efros)
15-463: Computational Photography Alexei Efros, CMU, Spring 2010 Most slides from Steve Marschner Sampling and Reconstruction.
Ted Adelson’s checkerboard illusion. Motion illusion, rotating snakes.
Slides from Alexei Efros
CS 691 Computational Photography
Linear Filtering – Part II Selim Aksoy Department of Computer Engineering Bilkent University
Computational Photography CSE 590 Tamara Berg Filtering & Pyramids.
Lecture 2: Filtering CS4670/5670: Computer Vision Kavita Bala.
Image Filtering, Part 2: Resampling Today’s readings Forsyth & Ponce, chapters Forsyth & Ponce –
Convolution, Edge Detection, Sampling : Computational Photography Alexei Efros, CMU, Fall 2006 Some slides from Steve Seitz.
CSCE 641 Computer Graphics: Image Sampling and Reconstruction Jinxiang Chai.
Sampling and Pyramids : Rendering and Image Processing Alexei Efros …with lots of slides from Steve Seitz.
Edges and Scale Today’s reading Cipolla & Gee on edge detection (available online)Cipolla & Gee on edge detection Szeliski – From Sandlot ScienceSandlot.
Recap from Monday Spectra and Color Light capture in cameras and humans.
Lecture 2: Edge detection and resampling
Image transformations, Part 2 Prof. Noah Snavely CS1114
CSCE 641 Computer Graphics: Image Sampling and Reconstruction Jinxiang Chai.
Image Sampling Moire patterns
Lecture 1: Images and image filtering
Linear filtering. Overview: Linear filtering Linear filters Definition and properties Examples Gaussian smoothing Separability Applications Denoising.
Lecture 4: Image Resampling CS4670: Computer Vision Noah Snavely.
15-463: Computational Photography Alexei Efros, CMU, Fall 2011 Many slides from Steve Marschner Sampling and Reconstruction.
Lecture 3: Image Resampling CS4670: Computer Vision Noah Snavely Nearest-neighbor interpolation Input image 3x upsample hq3x interpolation (ZSNES)
Lecture 2: Image filtering
Linear filtering.
Slides from Alexei Efros, Steve Marschner Filters & fourier theory.
Image Sampling Moire patterns -
Recap from Friday Pinhole camera model Perspective projections Lenses and their flaws Focus Depth of field Focal length and field of view.
CSC589 Introduction to Computer Vision Lecture 9 Sampling, Gaussian Pyramid Bei Xiao.
Computer Vision Spring ,-685 Instructor: S. Narasimhan Wean 5409 T-R 10:30am – 11:50am.
Slide credit Fei Fei Li. Image filtering Image filtering: compute function of local neighborhood at each position Really important! – Enhance images.
Applications of Image Filters Computer Vision CS 543 / ECE 549 University of Illinois Derek Hoiem 02/04/10.
Image Resampling CS4670: Computer Vision Noah Snavely.
Image Resampling CS4670: Computer Vision Noah Snavely.
Lecture 4: Image Resampling and Reconstruction CS4670: Computer Vision Kavita Bala.
Lecture 3: Edge detection CS4670/5670: Computer Vision Kavita Bala From Sandlot ScienceSandlot Science.
Image Filtering Computer Vision CS 543 / ECE 549 University of Illinois Derek Hoiem 02/02/10.
Computer Vision Spring ,-685 Instructor: S. Narasimhan Wean 5403 T-R 3:00pm – 4:20pm.
Linear filtering. Motivation: Noise reduction Given a camera and a still scene, how can you reduce noise? Take lots of images and average them! What’s.
CS 691B Computational Photography
CS559: Computer Graphics Lecture 3: Image Sampling and Filtering Li Zhang Spring 2010.
Pixels and Image Filtering Computational Photography Derek Hoiem 08/26/10 Graphic:
Lecture 3: Filtering and Edge detection
Lecture 5: Fourier and Pyramids
Reconnaissance d’objets et vision artificielle
Linear filtering. Motivation: Image denoising How can we reduce noise in a photograph?
Projects Project 1a due this Friday Project 1b will go out on Friday to be done in pairs start looking for a partner now.
Cornell CS465 Fall 2004 Lecture 5© 2004 Steve Marschner 1 Sampling and reconstruction CS 465 Lecture 5.
CSE 185 Introduction to Computer Vision Image Filtering: Spatial Domain.
Grauman Today: Image Filters Smooth/Sharpen Images... Find edges... Find waldo…
Lecture 1: Images and image filtering CS4670/5670: Intro to Computer Vision Noah Snavely Hybrid Images, Oliva et al.,
Slide credit Fei Fei Li.
CS 4501: Introduction to Computer Vision Filtering and Edge Detection
Image Resampling & Interpolation
Sampling and reconstruction
Image Sampling Moire patterns
Recap from Wednesday Spectra and Color Light capture in cameras and humans.
Image Sampling Moire patterns
Multiscale Analysis of Images
More Image Manipulation
Sampling and Reconstruction
Samuel Cheng Slide credits: Noah Snavely
Image Processing Today’s readings For Monday
Motion illusion, rotating snakes
Filtering Part 2: Image Sampling
Linear filtering.
Image Sampling Moire patterns
Resampling.
Presentation transcript:

Computational Photography: Sampling + Reconstruction Connelly Barnes Slides from Alexei Efros and Steve Marschner

Sampling and Reconstruction

© 2006 Steve Marschner 3 Sampled representations How to store and compute with continuous functions? Common scheme for representation: samples –write down the function’s values at many points [FvDFH fig.14.14b / Wolberg]

© 2006 Steve Marschner 4 Reconstruction Making samples back into a continuous function –for output (need realizable method) –for analysis or processing (need math method) –amounts to “guessing” what the function did in between [FvDFH fig.14.14b / Wolberg]

1D Example: Audio lowhigh frequencies

© 2006 Steve Marschner 6 Sampling in digital audio Recording: sound to analog to samples to disc Playback: disc to samples to analog to sound again –how can we be sure we are filling in the gaps correctly?

© 2006 Steve Marschner 7 Sampling and Reconstruction Simple example: a sine wave

© 2006 Steve Marschner 8 Undersampling What if we “missed” things between the samples? Simple example: undersampling a sine wave –unsurprising result: information is lost

© 2006 Steve Marschner 9 Undersampling What if we “missed” things between the samples? Simple example: undersampling a sine wave –unsurprising result: information is lost –surprising result: indistinguishable from lower frequency

© 2006 Steve Marschner 10 Undersampling What if we “missed” things between the samples? Simple example: undersampling a sine wave –unsurprising result: information is lost –surprising result: indistinguishable from lower frequency –also was always indistinguishable from higher frequencies –aliasing: signals “traveling in disguise” as other frequencies

Aliasing Examples Airplane Propeller Video

Aliasing Examples Time-lapse Watches Video

Aliasing Properly sampled image Moiré pattern (spatial aliasing)

Moiré Patterns

Aliasing in images

Antialiasing What can we do about aliasing? Sample more often –Join the Megapixel craze of the photo industry –But that only shifts the problem to higher frequencies Blur / lowpass filter –Get rid of some high frequencies –Will lose information –But better than aliasing

© 2006 Steve Marschner 17 Preventing aliasing Introduce lowpass filters: –remove high frequencies leaving only safe, low frequencies –choose lowest frequency in reconstruction (disambiguate)

Nyquist-Shannon Sampling Theorem A signal containing no frequencies higher than f can be reconstructed exactly by sampling at > 2f.

© 2006 Steve Marschner 19 Linear filtering: a key idea Transformations on signals; e.g.: –bass/treble controls on stereo –blurring/sharpening operations in image editing –smoothing/noise reduction in tracking Key properties –linearity: filter(f + g) = filter(f) + filter(g) –shift invariance: behavior invariant to shifting the input delaying an audio signal sliding an image around Can be modeled mathematically by convolution

© 2006 Steve Marschner 20 Moving Average basic idea: define a new function by averaging over a sliding window a simple example to start off: smoothing

© 2006 Steve Marschner 21 Weighted Moving Average Can add weights to our moving average Weights […, 0, 1, 1, 1, 1, 1, 0, …] / 5

© 2006 Steve Marschner 22 Weighted Moving Average bell curve (gaussian-like) weights […, 1, 4, 6, 4, 1, …]

© 2006 Steve Marschner 23 Moving Average In 2D What are the weights H? Slide by Steve Seitz

© 2006 Steve Marschner 24 Cross-correlation filtering Let’s write this down as an equation. Assume the averaging window is (2k+1)x(2k+1): We can generalize this idea by allowing different weights for different neighboring pixels: This is called a cross-correlation operation and written: H is called the “filter” or “kernel.” Slide by Steve Seitz

Gaussian filtering A Gaussian kernel gives less weight to pixels further from the center of the window Slide by Steve Seitz

Box Filter vs. Gaussian Filter Slide by Steve Seitz

Convolution Cross-correlation: Convolution is similar to cross-correlation, but the filter is flipped horizontally and vertically before being applied: It is written: Suppose H is a Gaussian or mean kernel. How does convolution differ from cross-correlation? Slide by Steve Seitz

© 2006 Steve Marschner 28 Convolution is nice! Notation: Convolution is a multiplication-like operation –commutative –associative –distributes over addition –scalars factor out –identity: unit impulse e = […, 0, 0, 1, 0, 0, …] Conceptually no distinction between filter and signal Usefulness of associativity –often apply several filters one after another: (((a * b 1 ) * b 2 ) * b 3 ) –this is equivalent to applying one filter: a * (b 1 * b 2 * b 3 )

Separable Filters Some kernels K can be written: K = H ∗ V, H is horizontal, V is vertical Filter first by H then V (or vice versa) Why is this useful?

Practice with linear filters Original ? Source: D. Lowe

Practice with linear filters Original Filtered (no change) Source: D. Lowe

Practice with linear filters Original ? Source: D. Lowe

Practice with linear filters Original Shifted left By 1 pixel Source: D. Lowe

Other filters Sobel ? Separable (show on board)

Other filters Vertical Edge (absolute value) Sobel

Other filters Sobel Separable (show on board) ?

Other filters Horizontal Edge (absolute value) Sobel Separable (show on board)

Sinc filter Spatial Kernel Frequency Response Ideal for Nyquist-Shannon: removes high frequencies! Often a bit higher quality than Gaussian But can introduce ringing (oscillations) due to sine

Weight contributions of neighboring pixels by nearness Same shape in spatial and frequency domain (Fourier transform of Gaussian is Gaussian) x 5,  = 1 Slide credit: Christopher Rasmussen Important filter: Gaussian

Gaussian filters Remove “high-frequency” components from the image (low-pass filter) –Images become more smooth Convolution with self is another Gaussian –So can smooth with small-width kernel, repeat, and get same result as larger-width kernel would have –Convolving two times with Gaussian kernel of width σ is same as convolving once with kernel of width σ√2 Source: K. Grauman

How big should the filter be? Values at edges should be near zero Rule of thumb for Gaussian: set filter half- width to about 3 σ Normalize truncated kernel. Why? Practical matters Side by Derek Hoiem

Size of Output? MATLAB: conv2(g,f,shape) Python: scipy.signal.convolve2d(g,f,shape) –shape = ‘full’: output size is sum of sizes of f and g –shape = ‘same’: output size is same as f –shape = ‘valid’: output size is difference of sizes of f, g f gg gg f gg g g f gg gg full samevalid Source: S. Lazebnik

Image half-sizing This image is too big to fit on the screen. How can we reduce it? How to generate a half- sized version?

Image sub-sampling Throw away every other row and column to create a 1/2 size image - called image sub-sampling 1/4 1/8 Slide by Steve Seitz

Image sub-sampling 1/4 (2x zoom) 1/8 (4x zoom) Aliasing! What do we do? 1/2 Slide by Steve Seitz

Gaussian (lowpass) pre-filtering G 1/4 G 1/8 Gaussian 1/2 Solution: filter the image, then subsample Filter size should double for each ½ size reduction. Why? Slide by Steve Seitz

Subsampling with Gaussian pre-filtering G 1/4G 1/8Gaussian 1/2 Slide by Steve Seitz

Compare with... 1/4 (2x zoom) 1/8 (4x zoom) 1/2 Slide by Steve Seitz

Gaussian (lowpass) pre-filtering G 1/4 G 1/8 Gaussian 1/2 Solution: filter the image, then subsample Filter size should double for each ½ size reduction. Why? How can we speed this up? Slide by Steve Seitz

Image Pyramids Known as a Gaussian Pyramid [Burt and Adelson, 1983] In computer graphics, a mip map [Williams, 1983] A precursor to wavelet transform Slide by Steve Seitz

Figure from David Forsyth

What are they good for? Improve Search –Search over translations Classic coarse-to-fine strategy –Search over scale Template matching E.g. find a face at different scales Pre-computation –Need to access image at different blur levels –Useful for texture mapping at different resolutions (called mip-mapping)

Gaussian pyramid construction filter mask Repeat Filter Subsample Until minimum resolution reached can specify desired number of levels (e.g., 3-level pyramid) Whole pyramid is only 4/3 the size of the original image! (show) Slide by Steve Seitz