James Ritman Univ. Giessen Overview of the Proposed Antiproton Facility Antiproton production facility High Energy Storage Ring (HESR) Electron cooling.

Slides:



Advertisements
Similar presentations
The Central Straw Tube Tracker In The PANDA Experiment
Advertisements

Carsten Schwarz KP2 Physics with anti protons at the future GSI facility Physics program Detector set-up p e - coolerdetector High Energy Storage.
Hierarchies of Matter matter crystal atom atomic nucleus nucleon quarks m m m m < m (macroscopic) confinement hadron.
TIME 2005: TPC for the ILC 6 th Oct 2005 Matthias Enno Janssen, DESY 1 A Time Projection Chamber for the International Linear Collider R&D Studies Matthias.
The Lightweight Straw Tube Tracker for PANDA Detector at GSI Andrey Sokolov *,1, James Ritman 1, Peter Wintz 1, Paola Gianotti 2, Dario Orecchini 2 1 Institut.
C. Schwarz Physics with Antiprotons - Detector - Detector requirements Overview of the detector concept Selected detector components Simulations.
PHENIX Decadal Plan o Midterm upgrades until 2015 o Long term evolution after 2015 Dynamical origins of spin- dependent interactions New probes of longitudinal.
STORI’02Carsten Schwarz Physics with p at the Future GSI Facility Physics program Detector set-up p e - coolerdetector High Energy Storage Ring HESR High.
Concept of the PANDA Detector for pp&pA at GSI Physical motivation for hadron physics with pbars The antiproton facility Detector concept Selected simulation.
C. Schwarz Physics with Antiprotons - Detector - Detector requirements Overview of the detector concept Detector components Trigger Costs.
New Opportunities for Hadron Physics with the Planned PANDA Detector
James Ritman Univ. Giessen PANDA: Experiments to Study the Properties of Charm in Dense Hadronic Matter Overview of the PANDA Pbar-A Program The Pbar Facility.
Description of BTeV detector Jianchun Wang Syracuse University Representing The BTeV Collaboration DPF 2000 Aug , 2000 Columbus, Ohio.
1 The CMS Heavy Ion Program Michael Murray Kansas.
1 BaBar Collaboration Randall Sobie Institute for Particle Physics University of Victoria.
Preliminary Measurement of the BF(   → K -  0  ) using the B A B AR Detector Fabrizio Salvatore Royal Holloway University of London for the B A B AR.
Oct. 5 th th International Workshop on Heavy Quarkonium 2011 Jim Ritman Mitglied der Helmholtz-Gemeinschaft Status of PANDA.
Antiproton Physics at GSI The GSI Future project The antiproton facility The physics program - Charmonium spectroscopy - Charmed hybrids and glueballs.
Workshop on Experiments with Antiprotons at the HESR – April 2002, GSI Charmed Hadrons in Matter Introduction Medium Effects in the light quark sector.
APS Meeting April 5-8, 2003 at Philadelphia Chunhui Luo 1 Chunhui Luo Inclusive J/ψ Production at DØ.
The Design of a Detector for the Electron Relativistic Heavy Ion Collider Anders Ingo Kirleis 1, William Foreman 1, Elke-Caroline Aschenauer 2, and Matthew.
The HERMES Dual-Radiator Ring Imaging Cerenkov Detector N.Akopov et al., Nucl. Instrum. Meth. A479 (2002) 511 Shibata Lab 11R50047 Jennifer Newsham YSEP.
Working Group 5 Summary David Christian Fermilab.
HARP for MiniBooNE Linda R. Coney Columbia University DPF 2004.
GlueX Particle Identification Ryan Mitchell Indiana University Detector Review, October 2004.
The GlueX Detector 5/29/091CIPANP The GlueX Detector -- David Lawrence (JLab) David Lawrence (JLab) Electron beam accelerator continuous-wave (1497MHz,
Antiproton Physics at GSI Introduction The antiproton facility The physics program - Charmonium spectroscopy - Hybrids and glueballs - Interaction of charm.
Performance of the PANDA Barrel DIRC Prototype 1 GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt 2 Goethe-Universität Frankfurt Marko Zühlsdorf.
1 Plans for JINR participation at FAIR JINR Contributions: ● Accelerator Complex ● Condensed Baryonic Matter ● Antiproton Physics ● Spin Physics Physics.
Setup for hypernuclear gamma-ray spectroscopy at J-PARC K.Shirotori Tohoku Univ. Japan for the Hyperball-J collaboration J-PARC E13 hypernuclear  -ray.
Valery Dormenev Institute for Nuclear Problems, Minsk
C. Schwarz Experiments with a cooled p beam on an internal target Physics program Detector set-up p e - coolerdetector High Energy Storage Ring HESR P.
NanoPHYS’12 – December 17-19, 2012 K. Nakano, S. Miyasaka, K. Nagai and S. Obata (Department of Physics, Tokyo Institute of Technology) Drift Chambers.
International Workshop on Linear Colliders, Geneve Muon reconstruction and identification in the ILD detector N. D’Ascenzo, V.Saveliev.
PID for super Belle (design consideration) K. Inami (Nagoya-u) - Barrel (TOP counter) - Possible configuration - Geometry - Endcap (Aerogel RICH) - Photo.
Latifa Elouadrhiri Jefferson Lab Hall B 12 GeV Upgrade Drift Chamber Review Jefferson Lab March 6- 8, 2007 CLAS12 Drift Chambers Simulation and Event Reconstruction.
James Ritman Univ. Giessen PANDA: An Experiment To Investigate Hadron Structure Using Antiproton Beams Overview of the GSI Upgrade Overview of the PANDA.
PANDA GSI 13. December 2006 PID TAG Georg Schepers PANDA Technical Assessment Group PID Status Report G. Schepers for the PID TAG GSI PID TAG.
Particle Identification at BESIII Kanglin He April 23, 2007, Amsterdam.
Some remarks on (mis)identification: separation of pions from electrons Answer the question of the feasibility of p_bar p  e + e - Answer the question.
C. Schwarz Experiments with a cooled p beam on an internal target Physics program Detector set-up Carsten Schwarz p e - coolerdetector High Energy Storage.
J.RItman PANDA Collab. Meeting, May 2003 Status of the PANDA Simulations Event Generator UrQMD p A MVD Resolution Time of Flight Estimates of Data Rates.
1 Participation of the Joint Institute for Nuclear Research (Dubna) in PANDA experiment at Future GSI Facility Nuclear Structure Physics Physics with Antiprotons.
First CMS Results with LHC Beam
Goals of future p-pbar experiment Elmaddin Guliyev Student Seminar, KVI, Groningen University 6 November 2008.
CP violation in B decays: prospects for LHCb Werner Ruckstuhl, NIKHEF, 3 July 1998.
CGEM-IT project and beam test program G. Felici for the FE-LNF-TO team Partially supported by the Italian Ministry of Foreign Affairs under the Program.
Febr.28-March 2, 2006N Nbar project at VEPP The project to measure the nucleon form factors at VEPP-2000 Workshop - e+e- collisions from phi to psi,
Detectors for VEPP-2000 B.Khazin Budker Institute of Nuclear Physics 2 March 2006.
First results from SND at VEPP-2000 S. Serednyakov On behalf of SND group VIII International Workshop on e + e - Collisions from Phi to Psi, PHIPSI11,
P.F.Ermolov SVD-2 status and experimental program VHMP 16 April 2005 SVD-2 status and experimental program 1.SVD history 2.SVD-2 setup 3.Experiment characteristics.
Principle Simulations for Detector Concepts at HESR Goals Methods Current Status Application to p + p   ´(3686) GSI Workshop on its Future Facility
2005/07/12 (Tue)8th ACFA Full simulator study of muon detector and calorimeter 8th ACFA Workshop at Daegu, Korea 2005/07/12 (Tue) Hiroaki.
Quarkonia production with the HERA-B experiment J. Spengler, MPI Heidelberg.
English for young physicists WS 09/10 Niklas Müller
Status of BESIII and upgrade of BESIII
The Electromagnetic Calorimetry of the PANDA Detector at FAIR
Electromagnetic Physics Working Group discussion
Neutrino factory near detector simulation
Simulation of Luminosity Variation
Huagen Xu IKP: T. Randriamalala, J. Ritman and T. Stockmanns
  at Super tau-charm
The Compact Muon Solenoid Detector
Plans for nucleon structure studies at PANDA
VEPP-2000 plans for the study of the nucleon form factors
Project Presentations August 5th, 2004
GEANT Simulations and Track Reconstruction
LHCb Particle Identification and Performance
Background rejection in P326 (NA48/3)
Presentation transcript:

James Ritman Univ. Giessen Overview of the Proposed Antiproton Facility Antiproton production facility High Energy Storage Ring (HESR) Electron cooling Detector concept Simulations of the detector properties Conclusions

James Ritman Univ. Giessen

Antiproton Production 50 MeV Proton Linac 5 Hz, T=0.1 ms, 50 mA SIS 18, 5  protons up to 2 GeV SIS 100, 4-5 bunches up to 29 GeV Pbar production: 10 8 pbar / bunch Collector Ring 5 s cooling Storage in the NESR at 3 GeV for ~ 20 min. Reinject into SIS100 Experiments at HESR

James Ritman Univ. Giessen Antiproton Storage Ring Number of p in HESR5x10 10 p production rate2x10 7 /sec High luminosity mode: (stochastic cooling) Beam momentum GeV/c Luminosity < 2x10 32 cm -2 s -1  p/p~10 -4 High resolution mode: (electron cooling) Beam momentum GeV/c Luminosity ~ cm -2 s -1  p/p~ 10 -5

James Ritman Univ. Giessen Electron Cooling Momentum spread of beam can be reduced by superimposing the p beam with an electron beam of the same average velocity.

James Ritman Univ. Giessen Fokker-Plank Equation Electron cooling is described by the Fokker-Plank equation. where  (v) is the p velocity distribution, F is the cooling force, m the ion mass and D the diffusion constant. F(v) (v)(v) v

James Ritman Univ. Giessen General Purpose Detector Detector requests: nearly 4  solid angle (partial wave analysis) high rate capability (2  10 7 annihilations/s) good PID ( , e, , , K, p) momentum resolution (~1%) vertex reconstruction for D, K 0 S,  for D   c  m  efficient trigger (e, , K, D,  ) modular design (Hypernuclei experiments)

James Ritman Univ. Giessen

Micro Vertex Detector (MVD) Number of layers5 in barrel, 5 in endcap Thickness (single layer) 200  m Thickness (5 layers)1.25% of X 0 Resolution   z  25 … 100  m 7.2 mio. barrel pixels 50 x 300 μm 2 mio. forward pixels 100 x 150 μm 200 mm

James Ritman Univ. Giessen MVD Performance  D0) = 51  m  Z0) = 82  m Requirement: significantly better than 100  m (D   c  m, D 0  c  m)

James Ritman Univ. Giessen Straw Tube Tracker STT Number of double layers15 Skew angle of layer 1 and 150°0° Skew angle of layers 2-142°-3° Straw tube wall thickness 26  m Wire thickness 20  m Gas90 : 10 He and C 4 H 10 Length150 cm Tube diameters (1-5, 6-10, 11-15)4, 6, 8 mm Total number of tubes8734 Transverse resolution 150  m example event: pp    4K

James Ritman Univ. Giessen Mini Drift Chambers MDC Number of cathode planes2 chambers x 3 layers x 2 planes Orientation of wire planes0°, 60°, 120° Signal wire thickness 25  m Field wire thickness 100  m Cell size1 cm x 1cm, i.e channels Gas90:10 He and C 4 H 10 Resolution: 150  m

James Ritman Univ. Giessen Momentum Resolution Polar angle resolution    1 mrad P t resolution  P /P  1-2 % N.B. 2 T solenoid field in z-direction, i.e. no fringe field!

James Ritman Univ. Giessen Invariant Mass Resolution J/    +  -   +-  +-  (J/  = 35 MeV/c 2  (  = 3.8 MeV/c 2 Example reaction: pp  J/  +  (  s = 4.4 GeV/c 2 )

James Ritman Univ. Giessen PID with DIRC Concept similar to the existing DIRC at BaBar

James Ritman Univ. Giessen DIRC Parameters Angle coverage22° - 150° Quartz thickness and length 1.7 cm / 150 cm SensorsGas chambers with multi-pad readout, or PMTs

James Ritman Univ. Giessen Pion/Kaon Separation High kaon efficiency with about 1-2% pion misidentification probability.

James Ritman Univ. Giessen Pion/Kaon Acceptance The simulated data distributions below are for pions and kaons from the reaction p p  D + D - with T beam = 6.7 GeV/c  s = 4 GeV

James Ritman Univ. Giessen Electromagnetic Calorimeter Detector materialPbWO 4 Photo sensorsAvalanche Photo Diodes Crystal size  35 x 35 x 150 mm 3 (i.e 1.5 x 1.5 R M 2 x 17 X 0 ) Energy resolution 1.54 % /  E[GeV] % Time resolution   130 ps Total number of crystals7150

James Ritman Univ. Giessen Invariant Mass Resolution Example reaction: pp  J/     (  s = 4.4 GeV/c 2 ) m(  )= GeV/c 2  (  ) = GeV/c 2

James Ritman Univ. Giessen Electron Pion Separation  -Suppression e  Deposited energy = p*c   MIP, thus DE < p*c Above 0.4 GeV/c about of pions misidentified

James Ritman Univ. Giessen Muon Detector MUD PositionOutside iron yoke Covered angle  30° - 80°,  = 360° Bar thickness2 cm Flux return as hadron absorber is 50 cm thick in the transverse direction. Threshold is 1.3 GeV/c

James Ritman Univ. Giessen Muon Performance  identification  misidentification High muon efficiency above 1.3 GeV/c About 1% probability for  misidentification

James Ritman Univ. Giessen Summary & Outlook Antiproton facility HESR: high luminosity, electron cooled beam Detector concept Performance of detector components studied OPEN POINTS Background generator (  Dubna) Forward spectrometer Target …

James Ritman Univ. Giessen Antiproton Physics Study Group T. Barnes 8, D. Bettoni 6, R. Calabrese 6, W. Cassing 5, M. Düren 5, S. Ganzuhr 1, A. Gillitzer 7, O. Hartmann 2, V. Hejny 7, P. Kienle 9, H. Koch 1, W. Kühn 5, U. Lynen 2, R. Meier 11, V. Metag 5, P. Moskal 7, H. Orth 2, S. Paul 9, K. Peters 1, J. Pochodzalla 10, J. R. 5, M. Sapozhnikov 3, L. Schmitt 9, C. Schwarz 2, K. Seth 4, N. Vlassov 3, W. Weise 9, U. Wiedner 12

James Ritman Univ. Giessen General Purpose Detector Detector requests: nearly 4  solid angle high rate capability (2  10 7 annihilations/s) good PID ( ,e, , ,K,p) efficient trigger (e, ,K,D,  ) J/+-J/+- ‘+-‘+- pp  ‘pp (  s=3.6 GeV)  4K

James Ritman Univ. Giessen HESR Detector Pellet-Target: Atoms/cm  m MicroVertexDetektor: (Si) 5 layers Straw-Tubes: 15 skewed double layers RICH: DIRC and Aerogel (Proximityfocussing) Straw-Tubes + Mini-Drift-Chambers PbWO 4 -calorimeter 17X 0 2T-Solenoid & 2Tm-Dipole Muon filter EM- & H-cal. near 0°

James Ritman Univ. Giessen Target A fiber/wire target will be needed for D physics, A pellet target is conceived: atoms/cm  m Open point: heating of the beam 1 mm

James Ritman Univ. Giessen

Simulation Scheme Tools:ROOT for data handling and analysis PLUTO++for event generation (ROOT library) phase space / exp. distributions for certain reactions read in by Geant4 or processed directly in ROOT Geant4for detailed detector simulations currently used version: linked with ROOT to use ROOT file I/O PLUTO in ROOT Simulation in GEANT4 Fast Simu In ROOT Analysis with HAF