Imaging: clues on the jet/environment interactions Two exemples: 1) HH 110 : “deflection” of the outflow 2) HH 30 : bending of the jet.

Slides:



Advertisements
Similar presentations
Intermediate-mass star- forming regions: are they so complex? Maite Beltrán Josep Miquel Girart Robert Estalella Paul T.P. Ho Aina Palau.
Advertisements

Physical conditions of the shocked regions in collimated outflows of planetary nebulae Angels Riera (UPC)
School of something FACULTY OF OTHER School of Physics & Astronomy FACULTY OF MATHEMATICS & PHYSICAL SCIENCES Massive YSOs and the transition to UCHIIs.
The Serpens Star Forming Region in HCO +, HCN, and N 2 H + Michiel R. Hogerheijde Steward Observatory The University of Arizona.
High Resolution Observations in B1-IRS: ammonia, CCS and water masers Claire Chandler, NRAO José F. Gómez, LAEFF-INTA Thomas B. Kuiper, JPL José M. Torrelles,
John Bally Center for Astrophysics and Space Astronomy Department of Astrophysical and Planetary Sciences University of Colorado, Boulder Star Formation.
1)Disks and high-mass star formation: existence and implications 2)The case of G : characteristics 3)Velocity field in G31.41: rotation or expansion?
Mrk334: is a connection between nucleus activity and merging of a companion? Smirnova A.A., Moiseev A.V., Afanasiev V.L. Special Astrophysical Observatory.
The Independency of Stellar Mass-Loss Rates on Stellar X-ray Luminosity and Activity Space Telescope Science Institute – 2012.
Multi-band Infrared Mapping of the Galactic Nuclear Region Q. D. Wang (PI), H. Dong, D. Calzetti (Umass), Cotera (SETI), S. Stolovy, M. Muno, J. Mauerhan,
Outflow, infall, and rotation in high-mass star forming regions
Color Anomaly in Multiple Quasars - Dust Inhomogeneity or Quasar Microlensing - Atsunori Yonehara (Univ. Tsukuba) with Hiroyuki Hirashita (Nagoya Univ.)
1mm observations of Orion-KL Plambeck, PACS team, Friedel, Eisner, Carpenter,...
SMA Observations of the Binary Protostar System in L723 Josep Miquel Girart 1, Ramp Rao 2, Robert Estalella 3 & Josep Mª Masqué 3 1 Institut de Ciències.
Proper Motions of large-scale Optical Outflows Fiona McGroarty, N.U.I. Maynooth ASGI, Cork 2006.
Composite colliding winds (CWo - orbiting; CWc - concentric; CWb - binary) and Seaquist, Taylor and Button (STB) model of HM Sge (open circle - hot component;
ORBITAL MOTIONS IN BINARY AND MULTIPLE PROTOSTARS L. F. Rodríguez (IAUNAM, Morelia) L. Loinard, M. Rodríguez, & P. D’Alessio (IAUNAM, Morelia) S. Curiel,
Rand (2000) NGC 5775 Hα map. D = 24.8 Mpc It is an interacting galaxy.
Hen : The Garden Sprinkler Nebula Angels Riera Universitat Politècnica de Catalunya.
M ORPHOLOGY OF G ALACTIC O PEN C LUSTERS Thirty six open clusters were selected from the 2MASS database on the basis of the latest open cluster catalogue.
HIGH VELOCITY JETS IN WATER- FOUNTAIN PRE-PLANETARY NEBULAE Mark Claussen, NRAO July 30, 2003 APN III, Mt. Rainier, WA.
Hen 2-90: The Planetary Nebula which looks like a YSO Raghvendra Sahai Jet Propulsion Laboratory, Caltech 1.Discovered by Henize (1967), listed in Perek-Kohoutek.
Centimeter and Millimeter Observations of Very Young Binary and Multiple Systems -Orbital Motions and Mass Determination -Truncated Protoplanetary Disks.
« Debris » discs A crash course in numerical methods Philippe Thébault Paris Observatory/Stockholm Observatory.
Star and Planet Formation Sommer term 2007 Henrik Beuther & Sebastian Wolf 16.4 Introduction (H.B. & S.W.) 23.4 Physical processes, heating and cooling.
Star Formation Research Now & With ALMA Debra Shepherd National Radio Astronomy Observatory ALMA Specifications: Today’s (sub)millimeter interferometers.
Magnetic Fields Near the Young Stellar Object IRAS M. J Claussen (NRAO), A. P. Sarma (E. Kentucky Univ), H.A. Wootten (NRAO), K. B. Marvel (AAS),
HH s at NIR ObservationsDiagnosis.  NKL  Trapezium  OMC1-S (L = 10 5 L o t
Rotating Disks around O-type Young Stars in NGC7538 IRS1 3D Gas Dynamics from Methanol Masers observed with the EVN Ciriaco Goddi.
VLBI observations of H 2 O masers towards the high-mass Young Stellar Objects in AFGL 5142 Ciriaco Goddi Università di Cagliari, INAF-Osservatorio Astronomico.
The launch and collimation ….. Stellar jets transport significant amounts of energy and momentum away from the powering source  important role in its.
Department of Physics and Astronomy Rice University From the Omega facility to the Hubble Space Telescope: Experiments and Observations of Supersonic Fluid.
Do YSOs host a wide-angled wind? - NIR imaging spectroscopy of H 2 emission - 3. Spectro-Imaging using Gemini-NIFS Subaru UM, 1/30/2008 Hiro Takami (ASIAA)
Large Scale CO Emission in the Orion Nebula Núria Marcelino (NRAO-CV) Olivier Berné (Leiden Obs, The Netherlands) José Cernicharo (CSIC/INTA, Spain) HST.
Spectropolarimetry of the starburst galaxy M82: Kinematics of dust outflow Michitoshi YOSHIDA 1),2), Koji S. KAWABATA 1), and Yoichi OHYAMA 3) 1) Hiroshima.
Schematic Picture of Region close to protostar From Matt & Pudritz (2005) disk envelope outflow.
Seeing Stars with Radio Eyes Christopher G. De Pree RARE CATS Green Bank, WV June 2002.
Dusty disks in evolved stars?
Studying Young Stellar Objects with the EVLA
Protostellar jets and outflows — what ALMA can achieve? — 平野 尚美 (Naomi Hirano) 中研院天文所 (ASIAA)
Stellar jets (I) History; Properties from observations.
Masers Surveys with Mopra: Which is best 7 or 3 mm? Simon Ellingsen, Maxim Voronkov & Shari Breen 3 November 2008.
Submillimeter Array CH3OH A Cluster of Highly Collimated and Young Bipolar Outflows Emanating from OMC1 South. Luis A. Zapata 1,2, Luis.
Jet-Environment Interactions in FRI Radio Galaxies Robert Laing (ESO)
Masahiro Machida (Kyoto Univ.) Shu-ichiro Inutsuka (Kyoto Univ.), Tomoaki Matsumoto (Hosei Univ.) Outflow jet first coreprotostar v~5 km/s v~50 km/s 360.
3D SPECTROSCOPY OF HERBIG HARO OBJECTS R. López 1, S.F. Sánchez 2, B. García-Lorenzo 3, R. Estalella 1, G. Gómez 3, A. Riera 4,1, K. Exter 3 (1) Departament.
The AU Mic Debris Ring Density profiles & Dust Dynamics J.-C. Augereau & H. Beust Grenoble Observatory (LAOG)
( 1: Kobe University, 2: Nagoya University, 3: NAOJ) ☆ Abstract ☆ We obtained a high spatial resolution (FWHM ~ 0.1”) near-infrared image of XZ Tau, a.
IRAS : A Puzzling High-Mass Protostar Candidate Aina Palau, Robert Estalella, Departament d'Astronomia i Meteorologia, Universitat de Barcelona.
Diffraction-limited bispectrum speckle interferometry of the carbon star IRC with 73 mas resolution: The dynamic evolution of the innermost circumstellar.
C. Y. Hui & W. Becker X-Ray Studies of the Central Compact Objects in Puppis-A & RX J Max Planck Institute for Extraterrestrial Physics, Giessenbachstrasse.
Multiple YSOs in the low-mass star-forming region IRAS CONTENT Introduction Previous work on IRAS Observations Results Discussion.
Radio Galaxies part 4. Apart from the radio the thin accretion disk around the AGN produces optical, UV, X-ray radiation The optical spectrum emitted.
DIAGNOSIS FROM JET OBSERVATIONS: A) KINEMATICS (v field: velocity components of the jet knots) a1) RADIAL VELOCITY line shifts: spectroscopy a2) TANG.
Searching for disks around high-mass (proto)stars with ALMA R. Cesaroni, H. Zinnecker, M.T. Beltrán, S. Etoka, D. Galli, C. Hummel, N. Kumar, L. Moscadelli,
The Birth of Stars and Planets in the Orion Nebula K. Smith (STScI)
The University of Sheffield Joanna Holt 20 th October 2006 Emission line outflows: the evidence for AGN-induced feedback Clive Tadhunter.
Competitive Science with the WHT for Nearby Unresolved Galaxies Reynier Peletier Kapteyn Astronomical Institute Groningen.
NGC7538-IRS1: Polarized Dust & Molecular Outflow C. L. H. Hull (UC Berkeley), T. Pillai (Caltech), J.-H. Zhao (CfA), G. Sandell (SOFIA-USRA, NASA), M.
The Ionization Toward The High-Mass Star-Forming Region NGC 6334 I Jorge L. Morales Ortiz 1,2 (Ph.D. Student) C. Ceccarelli 2, D. Lis 3, L. Olmi 1,4, R.
LDN 723: Can molecular emission be used as clock calibrators? Josep Miquel Girart Collaborators: J.M.Masqué,R.Estalella (UB) R.Rao (SMA)
ALMA Cycle 0 Observation of Orion Radio Source I Tomoya Hirota (Mizusawa VLBI observatory, NAOJ) Mikyoung Kim (KVN,KASI) Yasutaka Kurono (ALMA,NAOJ) Mareki.
Lecture 9: Wind-Blown Bubbles September 21, 2011.
1 SIMBA survey of southern high-mass star forming regions Santiago Faúndez (U. de Chile) Leonardo Bronfman(U. de Chile) Guido Garay (U. de Chile) Rolf.
SMA and ASTE Observations of Low-mass Protostellar Envelopes in the Submillimeter CS (J = 7-6) and HCN (J = 4-3) Lines Shigehisa Takakuwa 1, Takeshi Kamazaki.
GPI Astrometric Calibration
UVIS Calibration Update
-Orbital Motions and Mass Determination
Molecular Outflows in Young Stellar Objects
Cornelia C. Lang University of Iowa collaborators:
Presentation transcript:

Imaging: clues on the jet/environment interactions Two exemples: 1) HH 110 : “deflection” of the outflow 2) HH 30 : bending of the jet

HH 110 Kajdic et al. 2012, AJ, 143,106 HH 110 is a long (~0.45pc) jet extending ~ N-S: unknown powering source? HH 270, NE of HH 110, extending ~E-W P. source: IRAS (Class I) IRAS: powering source of both jets: HH 270 jet suffers a grazin collision with a dense molecular clump and then reappears as HH 110, which propagates in a inhomogeneous ambient environment. “Evidences” from detection of dense clump proper motion measurements

Observing at NIR wavelengths (H 2, K band)

Observing at mm wavelengths (dense gas) Sepúlveda et al., 2011, AA, 527, 41

From proper motions….

HH 30 : bending of the jet/counterjet Estalella et al,2012,AJ,144,61 Large scale bending: “C” shape: jet/counterjet is being entrained toward the NW:  Proper motion of the source toward SE with respect to the ambient : ~2 kms -1 ~ arcsec yr -1 (undetectable).  Deflection by an isotropic stellar wind blowing the jet /counterjet toward SE: modeling:

Fit of the model based on isotropic Stellar wind of a CTTS (W):  Momentum rate needed to deflect the jet ~ M 0 yr -1 km s -1  Typical values in CCTS: M 0 yr -1 km s -1  The 2MASS source J , located at an (  ) offset of -158’, -70’’ from W, has (J-H), (H-K) colours of CTTS: could be the responsible of the wind? (It should be noted that this bending is not easy to detect, since is only appreciable when the jet is imaged over a long lenght ~0.35 pc in this case)

Imaging: clues on the nature of the powering jet source The YSO that power a jet remains invisible (optical/ir), highly extinguished. Indirect evidence on its nature can be derived by modeling the morphology (“wiggling”) + kinematics (proper motions) An example: following with HH 30 ….

The jet of HH 30 (1 rst chap.) (Anglada, López, Estalella, Masegosa, Riera, Raga 2007) Jet proper motions from two images in [SII] with the NOT Wiggling path of the jet (Burrows et al. 1996)

HH30* Detail of proper Motions obtained From two epochs ( )

“far” from the source

The wiggling path of the jet is fitted assuming that the jet source forms part of a low-mass binary system The HST dust disk is thus circumbinary. Modeling the jet gives two possibilities PrecessionOrbital motion Binary separation: 0.''01 (1 AU) 0.''1 (10 AU) Symetry jet-cj: point (S ) mirror ( C )

To discriminate between the two alternative scenarios  Modeling the jet/counterjet system  orbital motion of the jet source The jet of HH 30 (2 ond chap.)

Imaging: clues on differences in physical conditions through the jet Compare the spatial brightness distribution through different narrow-band filters: variations on the excitation, density, degree of ionization …through the jet (also from spectra, we will see later)

Differences in the gas excitation:

[SII] 6716/31 A HH HH 223

Excitation of the gas, from [SII] / H  line ratio: “Divide” two images after appropriate recentering and flux scaling using field stars