Neil Marks; DLS/CCLRC Cockcroft Institute 2005/6. Injection and Extraction into/out of Accelerators Neil Marks, DLS/CCLRC, Daresbury Laboratory, Warrington.

Slides:



Advertisements
Similar presentations
Neil Marks; DLS/CCLRC L ecture to Cockcroft Institute 2005/6. © N.Marks MMIV Resonances Neil Marks, DLS/CCLRC, Daresbury Laboratory, Warrington WA4 4AD,
Advertisements

Neil Marks; DLS/CCLRC Lecture to Cockcroft Institute 2005/6. © N.Marks MMIV Magnets interactions with beam. Neil Marks, DLS/CCLRC, Daresbury Laboratory,
USR-WS (Beijing) Oct. 30 – Nov. 1, 2012 K. Soutome (JASRI / SPring-8) on behalf of SPring-8 Upgrade Working Group Injection Scheme for the SPring-8 Upgrade.
Injection and extraction
Alexandr Drozhdin March 16, 2005 MI-10 Injection.
Design and Performance Expectation of ALPHA accelerator S.Y. Lee, IU 2/26/ Introduction 2. Possible CIS re-build and parameters 3. Issues in the.
ALPHA Storage Ring Indiana University Xiaoying Pang.
Sergey Antipov, University of Chicago Fermilab Mentor: Sergei Nagaitsev Injection to IOTA ring.
March A. Chancé, J. Payet DAPNIA/SACM / Beta-beam ECFA/BENE Workshop The Decay Ring -First Design- A. Chancé, J.Payet CEA/DSM/DAPNIA/SACM.
2011 Damping Rings Lattice Evaluation Mark Palmer Cornell University March 8, 2011.
NON-SCALING FFAGs: questions needing answers Andy Wolski The Cockcroft Institute, and the University of Liverpool Department of Physics. BASROC-CONFORM.
Proton beams for the East Area The beams and their slow extraction By : Rende Steerenberg PS/OP.
Eric Prebys USPAS, Knoxville, TN, Jan , 2014.
Storage Ring : Status, Issues and Plans C Johnstone, FNAL and G H Rees, RAL.
3 GeV,1.2 MW, Booster for Proton Driver G H Rees, RAL.
Particle dynamics in electron FFAG Shinji Machida KEK FFAG04, October 13-16, 2004.
Storage Rings Group Meeting Steve Werkema 24 March 2010.
1 Status of EMMA Shinji Machida CCLRC/RAL/ASTeC 23 April, ffag/machida_ ppt & pdf.
Muon Acceleration Plan David Kelliher ASTeC/STFC/RAL UKNF WP1, October 9 th, 2008.
Advanced Accelerator Design/Development Proton Accelerator Research and Development at RAL Shinji Machida ASTeC/STFC/RAL 24 March 2011.
Design of an Isochronous FFAG Ring for Acceleration of Muons G.H. Rees RAL, UK.
Part III Commissioning. Proof of Principle FFAG (POP) study The world first proton FFAG –Commissioned in March –From 50 keV to 500 keV in 1ms. –Proof.
First Thoughts on IDS G H Rees, RAL. Topics 1.Two-way, μ ± injection chicane for the dog-bone RLA. 2.Injection energy & efficiency for a first dog-bone.
Overview of Booster PIP II upgrades and plans C.Y. Tan for Proton Source group PIP II Collaboration Meeting 03 June 2014.
BEAM TRANSFER CHANNELS, BEAM TRANSFER CHANNELS, INJECTION AND EXTRACTION SYSTEMS OF NICA ACCELERATOR COMPLEX Tuzikov A., JINR, Dubna, Russia.
Design of the Turnaround Loops for the Drive Beam Decelerators R. Apsimon, J. Esberg CERN, Switzerland.
MTE vs CT D.Manglunki for BE/OP - pictures from M.Giovannozzi - details in “Fifty years of the CERN Proton Synchrotron (Vol I)” CERN
Accelerator Science and Technology Centre POST-LINAC BEAM TRANSPORT AND COLLIMATION FOR THE UK’S NEW LIGHT SOURCE PROJECT D. Angal-Kalinin,
FFAG Studies at RAL G H Rees. FFAG Designs at RAL Hz, 4 MW, 3-10 GeV, Proton Driver (NFFAGI) Hz,1 MW, GeV, ISIS Upgrade (NFFAG) 3.
PHYSICAL PROJECT OF BOOSTER FOR NICA ACCELERATOR COMPLEX Alexey Tuzikov, Nikolay Agapov, Andrey Butenko, Alexey Eliseev, Viktor Karpinsky, Hamlet Khodzhibagiyan,
Status of KEK 150MeV FFAG M. Aiba (KEK) For KEK FFAG Gr. FFAG’05, 5 to 9 Dec., KURRI.
EMMA: Pulsed magnets Kiril Marinov MaRS group, ASTeC, Daresbury Laboratory 1.
Imperial College London 1 6. Injection into and ejection from circular machines PREACCELERATOR ACCUMULATORRING PARTICLESOURCE INJECTION 1 EJECTION INJECTION.
Injection and extraction Kickers and septa Injection methods –Single-turn hadron injection –Injection errors, filamentation and blow-up –Multi-turn hadron.
Plan for Beam Extraction using strip-line kicker with pulse bump orbit Present extraction kicker system Strip-line kicker system for ILC Beam extraction.
1 Fast kicker study Machine Time 2011/10/18~10/29(2 weeks) TB meeting 2011/01/14 T.Naito.
The Introduction to CSNS Accelerators Oct. 5, 2010 Sheng Wang AP group, Accelerator Centre,IHEP, CAS.
Principals of fast injection and extraction R. Apsimon.
PSB H- injection concept J.Borburgh, C.Bracco, C.Carli, B.Goddard, M.Hourican, B.Mikulec, W.Weterings,
FFAG’07 GrenobleJ. Pasternak, LPSC Grenoble Medical Spiral FFAG (RACCAM Ring) J. Pasternak, LPSC Grenoble 1.Motivations for medical FFAG. 2.Principle of.
The way to fast and "loss-free" SPS kickers E. Gaxiola With contributions from AB-BT-KSL section and F. Caspers, T. Kroyer, M. Timmins, J. Uythoven.
LER Workshop, Oct 11, 2006Intensity Increase in the LER – T. Sen1 LHC Accelerator Research Program bnl-fnal-lbnl-slac  Motivation  Slip stacking in the.
F Project X: Recycler 8.9 GeV/c Extraction D. Johnson, E. Prebys, M. Martens, J. Johnstone Fermilab Accelerator Advisory Committee August 8, 2007 D. Johnson.
MTE commissioning status S. Gilardoni, BE/ABP With C. Hernalsteens and M. Giovannozzi.
Neil Marks; ASTeC, CI.‘AC Magnets’; CI School A.C. Magnet Systems Neil Marks, ASTeC, Cockcroft Institute, Daresbury, Warrington WA4 4AD,
A Compact FFAG for Radioisotope Production D. Bruton R. Barlow, R. Edgecock, and C.J. Johnstone.
ALCW at SLAC, January 7, 2004J. Rogers, Novel Schemes for Damping Rings1 Novel Schemes for Damping Rings J. Rogers Cornell University Improving dynamic.
PS2 WG Injection and extraction systems Basics and assumptions
Specifications for Central Region Layout
BEAM TRANSFER CHANNELS, INJECTION AND EXTRACTION SYSTEMS
A.Lachaize CNRS/IN2P3 IPN Orsay
Injector Cyclotron for a Medical FFAG
ASTeC, Cockcroft Institute,
Cui Xiaohao, Zhang Chuang,Bian Tianjian January 12,2016
Proposal for a Transparent Off-Axis Injection Scheme for BESSY II
Elena Wildner CERN CA15139 Meeting, Sofia 15/
Isochronous, FFAG Rings with Insertions for Rapid Muon or Electron Acceleration G H Rees, RAL.
PSB rf manipulations PSB cavities
Junji Urakawa (KEK) for ATF International Collaboration
Beam Injection and Extraction Scheme
Strip-line Kicker R&D at KEK-ATF
Fast Kicker R&D at ATF T.Naito(KEK) TILC09 18/April/ /11/27.
Cui Xiaohao, Bian Tianjian, Zhang Chuang 2017/11/07
Patrick ALEXANDRE, 27, from France.
Multi-Turn Extraction for PS2 Preliminary considerations
Kicker and RF systems for Damping Rings
Kicker specifications for Damping Rings
Injection design of CEPC
Cooling of C6+ ion beam with pulsed electron beam
Presentation transcript:

Neil Marks; DLS/CCLRC Cockcroft Institute 2005/6. Injection and Extraction into/out of Accelerators Neil Marks, DLS/CCLRC, Daresbury Laboratory, Warrington WA4 4AD, U.K. Tel: (44) (0) Fax: (44) (0)

Neil Marks; DLS/CCLRC Cockcroft Institute 2005/6. The Injection/Extraction problem. Single turn injection/extraction: a magnetic element inflects beam into the ring and turn-off before the beam completes the first turn (extraction is the reverse). Multi-turn injection/extraction: the system must inflect the beam into the ring with an existing beam circulating without producing excessive disturbance or loss to the circulating beam. Accumulation in a storage ring: A special case of multi-turn injection - continues over many turns (with the aim of minimal disturbance to the stored beam). straight section injected beam magnetic element

Neil Marks; DLS/CCLRC Cockcroft Institute 2005/6. Single turn – simple solution A ‘kicker magnet’ with fast turn-off (injection) or turn-on (extraction) can be used for single turn injection. injection – fast fallextraction – fast rise Problems: i) rise or fall will always be non-zero  loss of beam; ii) single turn inject does not allow the accumulation of high current; iii) in small accelerators revolution times can be << 1  s. iv) magnets are inductive  fast rise (fall) means (very) high voltage. B t

Neil Marks; DLS/CCLRC Cockcroft Institute 2005/6. Multi-turn injection solutions Beam can be injected by phase-space manipulation: a) Inject into an unoccupied outer region of phase space with non-integer tune which ensures many turns before the injected beam re-occupies the same region (electrons and protons): eg – Horizontal phase space at Q = ¼ integer: x x’ turn 1 – first injection turn 2turn 3 turn 4 – last injection septum 0 field deflect. field

Neil Marks; DLS/CCLRC Cockcroft Institute 2005/6. Multi-turn injection solutions b) Inject into outer region of phase space - damping coalesces beam into the central region before re-injecting (leptons only): dynamic aperture injected beamnext injection after 1 damping time stored beam c) inject negative ions through a bending magnet and then ‘strip’ to produce a p after injection (H- to p only).

Neil Marks; DLS/CCLRC Cockcroft Institute 2005/6. Multi-turn extraction solution ‘Shave’ particles from edge of beam into an extraction channel whilst the beam is moved across the aperture: beam movement extraction channel Points: some beam loss on the septum cannot be prevented; efficiency can be improved by ‘blowing up’ on 1/3rd or 1/4 th integer resonance. septum

Neil Marks; DLS/CCLRC Cockcroft Institute 2005/6. Magnet requirements Magnets required for injection and extraction systems. i) Kicker magnets: pulsed waveform; rapid rise or fall times (usually << 1  s); flat-top for uniform beam deflection. ii) Septum magnets: pulsed or d.c. waveform; spatial separation into two regions; one region of high field (for injection deflection); one region of very low (ideally 0) field for existing beam; septum to be as thin as possible to limit beam loss. Septum magnet schematic