Pasquale Di Bari (Max Planck, Munich) Neutrino Oscillation Workshop, Conca Specchiulla, September 9-16, 2006 RH neutrinos in cosmology: light vs. heavy.

Slides:



Advertisements
Similar presentations
Kiwoon Choi PQ-invariant multi-singlet NMSSM
Advertisements

Can we experimentally test seesaw and leptogenesis? Hitoshi Murayama (IPMU Tokyo & Berkeley) Melbourne Neutrino WS, Jun 4, 2008 With Matt Buckley.
1 3+2 Neutrino Phenomenology and Studies at MiniBooNE PHENO 2007 Symposium May 7-9, 2007 U. Wisconsin, Madison Georgia Karagiorgi, Columbia University.
Split Two-Higgs Doublet and Neutrino Condensation Fei Wang Tsinghua University
Teppei Katori, Indiana University1 PRD74(2006) Global 3 parameter Lorentz Violation model for neutrino oscillation with MiniBooNE Teppei Katori,
Joe Sato (Saitama University ) Collaborators Satoru Kaneko,Takashi Shimomura, Masato Yamanaka,Oscar Vives Physical review D 78, (2008) arXiv:1002.????
The minimal B-L model naturally realized at TeV scale Yuta Orikasa(SOKENDAI) Satoshi Iso(KEK,SOKENDAI) Nobuchika Okada(University of Alabama) Phys.Lett.B676(2009)81.
The classically conformal B-L extended standard model Yuta Orikasa Satoshi Iso(KEK,SOKENDAI) Nobuchika Okada(University of Alabama) Phys.Lett.B676(2009)81.
1 Flavor effects on leptogenesis Steve Blanchet Max-Planck-Institut für Physik, Munich September 15, 2006 Neutrino Oscillation Workshop Conca Specchiulla,
Pasquale Di Bari (INFN, Padova) Melbourne Neutrino Theory Workshop, 2-4 June 2008 New Aspects ofLeptogenesis Neutrino Mass Bounds (work in collaboration.
Higgs Boson Mass In Gauge-Mediated Supersymmetry Breaking Abdelhamid Albaid In collaboration with Prof. K. S. Babu Spring 2012 Physics Seminar Wichita.
Higgs Quadruplet for Type III Seesaw and Implications for → e and −e Conversion Ren Bo Coauther : Koji Tsumura, Xiao - Gang He arXiv:
Testing CPT with CMB 李明哲 University of Bielefeld 2008 年 4 月 28 日.
Status of Neutrino Science Hitoshi Murayama LBNLnu April 11, 2003.
MSSM in view of PAMELA and Fermi-LAT Ts. Enkhbat 2 nd workshop on LHC physics, CYCU, Chungli Based on: arXiv: B. BajcB. Bajc, Ts. E, D. K. Ghosh,
Comprehensive Analysis on the Light Higgs Scenario in the Framework of Non-Universal Higgs Mass Model M. Asano (Tohoku Univ.) M. Senami (Kyoto Univ.) H.
Primordial Neutrinos and Cosmological Perturbation in the Interacting Dark-Energy Model: CMB and LSS Yong-Yeon Keum National Taiwan University SDSS-KSG.
Particle Physics and Cosmology
Neutrino Physics - Lecture 1 Steve Elliott LANL Staff Member UNM Adjunct Professor ,
Richard Howl The Minimal Exceptional Supersymmetric Standard Model University of Southampton UK BSM 2007.
March 2005 Theme Group 2 Perspectives on Grand Unification in View of Neutrino Mass R. N. Mohapatra University of Maryland.
Fermion Masses and Unification Steve King University of Southampton.
Fermion Masses and Unification Lecture I Fermion Masses and Mixings Lecture II Unification Lecture III Family Symmetry and Unification Lecture IV SU(3),
March 2005 Theme Group 2 Unified TeV Scale Picture of Dark Matter and Baryogenesis R. N. Mohapatra University of Maryland Neutrino Telescope 2007, Venice.
Pasquale Di Bari (Max Planck, Munich) COSMO 06, Tahoe Lake, September 25-29, 2006 Flavor effects in leptogenesis Reference paper: S. Blanchet, PDB hep/ph.
Pasquale Di Bari (Max Planck, Munich) ‘The path to neutrino mass’, Aarhus, 3-6 September, 2007 Recent developments in Leptogenesis.
Quintessino model and neutralino annihilation to diffuse gamma rays X.J. Bi (IHEP)
Relating dark matter and radiative Seesaw neutrino mass scales without beyond SM gauge symmetry Xiao-Gang He 1. Introduction 2. Radiative seesaw and dark.
Fermion Masses and Unification Steve King University of Southampton.
Relic Neutrinos as a Source of Dark Energy Neal Weiner New York University IDM04 R.Fardon, D.B.Kaplan, A.E.Nelson, NW What does dark energy have to do.
Relic Neutrinos, thermal axions and cosmology in early 2014 Elena Giusarma arXiv: Based on work in collaboration with: E. Di Valentino, M. Lattanzi,
Takehiro Nabeshima University of Toyama ILC physics general meeting 9 jun Phenomenology at a linear collider in a radiative seesaw model from TeV.
The Cosmological Energy Density of Neutrinos from Oscillation Measurements Kev Abazajian Fermilab June 10, 2003 NuFact 03 – Fifth International Workshop.
Shaving Type-I Seesaw Mechanism with Occam's Razor
Masato Yamanaka (Saitama University) collaborators Shigeki Matsumoto Joe Sato Masato Senami arXiv: [hep-ph]Phys.Lett.B647: and Relic abundance.
Let us allow now the second heavy RH neutrino to be close to the lightest one,. How does the overall picture change? There are two crucial points to understand:
Pasquale Di Bari (INFN, Padova) Dark Matter from Heavy Right-Handed Neutrino Mixing (see A.Anisimov, PDB, arXiv: [hep-ph] ) NuHoRIzons 09 Harish-Chandra.
ILC Physics a theorist’s perspective Koji TSUMURA (Kyoto from Dec 1 st ) Toku-sui annual workshop 2013 KEK, Dec , 2013.
1 Supersymmetry Yasuhiro Okada (KEK) January 14, 2005, at KEK.
Right-handed sneutrino as cold dark matter of the universe Takehiko Asaka (EPFL  Niigata University) Refs: with Ishiwata and Moroi Phys.Rev.D73:061301,2006.
1 Determination of Dark Matter Properties in the Littlest Higgs Model with T-parity Masaki Asano (SOKENDAI) Collaborator: E. Asakawa (Meiji-gakuin), S.
1 Pasquale Di Bari (Max Planck, Munich) Università di Milano, February 8, 2007 Can neutrinos help to solve the puzzles of modern cosmology ?
Have neutrinos to do with Dark Energy ?
1 Neutrino Phenomenology Boris Kayser Scottish Summer School August 11,
Physics of sin 2 2θ 13 ★ What is θ 13 ? ★ What does sin 2 2θ 13 mean? sin 2 2θ 13 measures the oscillation amplitude of reactor neutrinos, e.g., at Daya.
Neutrino mass and DM direct detection Daijiro Suematsu (Kanazawa Univ.) Erice Sept., 2013 Based on the collaboration with S.Kashiwase PRD86 (2012)
21 Sept The MSM -- Neutrino Masses and Dark matter -- Takehiko Asaka (Tohoku University) TA, S.Blanchet, M.Shaposhnikov [hep-ph/ ] TA, M.Shaposhnikov.
Yukawa and scalar interactions induced by scalar relevant for neutrino masss generation are: Since is assumed to be an exact symmetry of the model has.
Geometric -Mass Hierarchy & Leptogenesis Zhi-zhong Xing (IHEP, Beijing)  A Conjecture + An Ansatz  Seesaw + Leptogenesis  -Mixing + Baryogenesis Z.Z.X.,
H. Quarks – “the building blocks of the Universe” The number of quarks increased with discoveries of new particles and have reached 6 For unknown reasons.
Duality in Left-Right Symmetric Seesaw Mechanism Michele Frigerio Service de Physique Théorique, CEA/Saclay Rencontres de Physique des Particules March.
Supersymmetric B-L Extended Standard Model with Right-Handed Neutrino Dark Matter Nobuchika Okada Miami Fort Lauderdale, Dec , 2010 University.
SUSY GUT Predictions for Neutrino Oscillation Mu-Chun Chen Brookhaven National Laboratory DUSEL Workshop, January 4-7, 2005 University of Colorado at Boulder.
THE CONNECTION BETWEEN NEUTRINO EXPERIMENTS AND LEPTOGENESIS Alicia Broncano Berrocal MPI.
Common problem against B and L genesis and its possible resolution M. Yoshimura Introduction 3 conditions for B asymmetry generation Sources of B non-conservation.
Perturbative vs Non- Perturbative Effects for Moduli Stabilisation and Cosmology J. Conlon, FQ [hep-ph] M. Cicoli, J. Conlon, FQ, [hep-th]
4 ½ Problems from Modern Cosmology 4 ½ Problems from Modern Cosmology Pasquale Di Bari MAX PLANCK PROJECT REVIEW 2005 and a few solutions !
Neutrino physics: The future Gabriela Barenboim TAU04.
Double beta decay and Leptogenesis International workshop on double beta decay searches Oct SNU Sin Kyu Kang (Seoul National University of.
Leptogenesis beyond the limit of hierarchical heavy neutrino masses
Classically conformal B-L extended Standard Model
Neutrinos and the Evolution
TeV-Scale Leptogenesis and the LHC
Interacting Dark Energy
A Study on Loop-Induced Neutrino Masses
On neutrinoless double beta decay in the nMSM
New aspects of leptogenesis
Double beta decay and Leptogenesis
Split Two-Higgs Doublet and Neutrino Condensation
Rome Samanta, University of Southampton
Presentation transcript:

Pasquale Di Bari (Max Planck, Munich) Neutrino Oscillation Workshop, Conca Specchiulla, September 9-16, 2006 RH neutrinos in cosmology: light vs. heavy

4 ‘PROBLEMS’ from COSMOLOGY: 1.Matter - antimatter asymmetry 2.Dark matter 3.Accelerating Universe 4.Inflation Plus 1 from neutrino physcis: 5. Neutrino Masses

Minimal RH implementation 3 limiting cases : pure Dirac: M R = 0 pseudo-Dirac : M R << m D see-saw limit: M R >> m D

Option: Advantages Drawbacks pure Dirac Minimal (M R =0) Description of neutrino masses as for all other fermions It can explain current Earth experiment results (except LSND, barring CPT violation that does not work anyway ) Why M R = 0 if not forbidden ? But neutrinos ARE different from all other fermions: neutral and much lighter Not so appealing (today) to solve cosmological problems (exception:Dirac leptogenesis ) Pseudo-Dirac limit Potentially able to explain all Earth experiments including LSND ( Kobayashi,Lim,Nojiri ’91;Giunti,Kim,Lee’92 ) To a closer (and up-to-date) inspection it does not work ! it does not help to understand neutrino lightness See-saw limit elegant way to understand lightness of neutrino masses moreover in line with GUT’s and with experimental results long list of cosmological and astrophysical applications (rest of the talk !) it can be also used to explain LSND depending on the see-saw scale (rest of the talk !) but in any case more attractive than the other cases especially from a cosmological and astrophysical point of view In the rest of the talk we will concentrate on this case ! (Minkowski; Yanagida; Gell Mann,Ramond,Slansky; Glashow; Barbieri,Nanopoulos,Morchio,Strocchi; Mohapatra,Senjanovic; Schechter,Valle)

See-saw mechanism 3 light LH neutrinos: 3 light LH neutrinos: N  2 heavy RH neutrinos: N 1, N 2, … N  2 heavy RH neutrinos: N 1, N 2, … m  M SEE-SAW (here we are barring the possibility of a `singular’ see-saw case where M 1 = 0) - considering that m is almost entirely determined by the experiments  2 important quantities for the role of RH neutrinos in cosmology : the `see-saw’ pivot scale  their number N

Pivot see-saw scale  * ~ 1 GeV m>  *  high pivot see-saw scale (the usual case: only heavy RH neutrinos are possible) m<  *  low pivot see-saw scale (light RH neutrinos are possible)

LSND,BBN and CMB ‘eV’- see-saw can accomodate LSND realizing a ‘3+2’ data fit (De Gouvea’05) If L =0 then the 2 RH neutrinos thermalize: problem for BBN and CMB ! BBN (Helium) Y BBN+CMB = L e  N Y exp =0.241 ± (Steigman ‘05) 2 additional neutrinos (if L e =0) are too many even for a conservative experimental upper bound on Y. CMB  m i <(0.17 – 0.9) eV (only active) (Seljak et al;Lesgourgues &,Pastor;Tegmark et al.;Fogli et al.;Hannestad et al.) m sterile < ( ) eV (3+1) (Dodelson,Melchiorri,Slosar;Seljak,Slosar,McDonald) -0.3<  N < 1.6 (95% CL) (no Ly  ) (Hannestad,Raffelt) 0.6<  N < 4.4 (95% CL) (with Ly  ) (Seljak,Slosar,McDonald) Future possible scenarios - MiniBoone disproves LSND and  N =0  no evidence for  ~0.1eV - MiniBoone confirms LSND but  N =0  evidence for  ~eV; an asimmetry L  can prevent the thermalization (Foot,Volkas’95;PDB,Lipari,Lusignoli’99;Chu,Cirelli’06) and | L | ~ can also reduce the Helium abundance (Fuller et al;) this could be produced also by RH neutrino decays realizing a late leptogenesis (PDB) -MiniBoone disproves LSND but  N  0; then it can be still interpreted as evidence for for  ~1 eV if RH neutrino are stable or larger if they decay after active neutrino decoupling; -Both MiniBoone confirms LSND and  N  0  very nice interplay between Earth experiments and physics of the early Universe  ~0.1eV

Lightest RH neutrino as Dark Matter candidate Even if the active-sterile neutrino mixing is typically very small   s ~ m D /M << 1, the sterile neutrino production is enhanced by matter effects and (Dodelson,Widrow’94;Dolgov,Hansen’01; Abazajian,Fuller,Patel’01) This condition can be fullfilled if m 1 <10 -5 eV and the Dark Matter RH neutrino is the lightest one (i.e. M 1 ~ O(KeV) (Asaka,Blanchet,Shaposhnikov’05) Moroever, the oscillations between the 2 heavier RH neutrinos can be responsible for baryogenesis if M 2  M 3 ~ 10 GeV (Akhmedov,Rubakov,Smirnov’99;Asaka,Shapo shnikov ’05)

Good and bad news Bad news: - The same flavor-mixing mechanism describing the prduction, also lead to radiative decay: N 1   +  ”   sin 2 2  M 1 5 >> t 0 - SDSS Ly  : M 1 > (10-14) KeV (Seljak et al. ’06;Lesgourgues et al) - However for L  0 producion is more efficient (resonant) and there is still some allowed region (Abazajian,Fuller,Paterl’01) Production for L =0 : Good news. Also able to explain: - Pulsar kicks (Kusenko,Segrè ‘97 ) - Early reionization and star formation (Kusenko,Biermann ‘05 ) L =0.01 X-Ray Background measurements

Heavy RH neutrinos Just 2 but solid motivations: See-saw original philosophy is not spoiled:  ~ M ew, M R ~M GUT : no need to introduce a new third fundamental scale to explain neutrino masses; Leptogenesis from heavy RH neutrino decays: it is simple and it works easily without requiring a particular tuning of parameters (talks by Blanchet,Ma,Petcov,….) Main criticisms : How to prove it ? Can it explain other cosmological problems beyond the matter-antimatter asymmetry (with leptogenesis) ?

Cosmological Heavy RH neutrinos beyond leptogenesis models to explain Dark Energy (and LSND) with Mass Varying Neutrinos varying the Universe M R =M R (A) with A a scalar field coupled to matter (Kaplan,Nelson,Weiner ‘04) heavy RH neutrino as candidates of DM (Babu,Eichler,Mohapatra ’89) unified models of leptogenesis and Dark Matter (Cosme et al. ’05;Saju,Urjit,Yajnik’05;Strumia ’06) They all require significant departures from a minimal extension of the SM ! : A point in favor of light RH neutrinos ??

Heavy vs. light: which verdict ? Heavy : solid motivations but difficult to test Light : richer phenomenology with many different potential ways to discover them but original see-saw philosophy gets lost

Heavy and light together ? Singular see-saw Due some symmetry S  det(M R), det(m D )=0  ‘Taking out’ the zero eigenvalues from M R and m D leads to a see-saw formula just for 2 light neutrinos and 2 heavy neutrinos plus one massless RH neutrino and one massless LH neutrino (Glashow’91,FukugitaYanagida’91,Chun,Kim,Lee’98) Weak breaking of S or loop effects can then lead to a nonzero mass for the RH neutrino that can explain LSND with a 3+1 spectrum (Mohapatra ’01) Double see-saw (Mohapatra,Valle’86;Ellis,Lopez,Nanopoulos 92’) Recently proposed to have both KeV DM and usual leptogenesis at the same time (Kang,Kim’06) Is it possible to have a unified picture joining both virtues of heavy and light neutrinos ?

Conclusions Heavy and light RH neutrinos have both attractive, though complementary interest Light RH neutrinos have a rich cosmological phenomenology but (waiting for MiniBoone and more precise measurement of  N ) we do not have today any compelling reason Heavy RH neutrinos have just 2 but solid (and traditional) motivations but difficulty in describing DM ….but maybe it is not impossible ! We are currently considering with A. Anisimov an intriguing possibility: a lightest weakly coupled RH neutrino DM (M 1 ~1 TeV) is produced from the oscillations of a heavier thermalized one while Leptogenesis can proceed from its decays (A.Anisimov,PDB)