Georg Raffelt, Max-Planck-Institut für Physik, München, Germany JIGSAW 07, 12-23 Feb 2007, TIFR, Mumbai, India Collective Supernova Neutrino Oscillations.

Slides:



Advertisements
Similar presentations
AP Physics C Mechanics Review.
Advertisements

Collective oscillations of SN neutrinos :: A three-flavor course :: Amol Dighe Tata Institute of Fundamental Research, Mumbai Melbourne Neutrino Theory.
The Quantum Mechanics of Simple Systems
METO 621 Lesson 6. Absorption by gaseous species Particles in the atmosphere are absorbers of radiation. Absorption is inherently a quantum process. A.
Physics 430: Lecture 24 Euler Equations Dale E. Gary NJIT Physics Department.
George M. Fuller Department of Physics & Center for Astrophysics and Space Science University of California, San Diego Supernova Physics and DUSEL UCLA/UCSD.
A. Yu. Smirnov International Centre for Theoretical Physics, Trieste, Italy Institute for Nuclear Research, RAS, Moscow, Russia.
The Role of Neutrinos in Astrophysics A.B. Balantekin University of Wisconsin GDR Neutrino Laboratoire Astroparticule et Cosmologie.
Georg Raffelt, Max-Planck-Institut für Physik, München, Germany TAUP 2007, September 2007, Sendai, Japan Collective Flavor Oscillations Georg Raffelt,
Neutrino oscillations in oxygen-neon-magnesium supernovae Cecilia Lunardini Arizona State University And RIKEN-BNL Research Center C.L., B. Mueller and.
The effect of turbulence upon supernova neutrinos Jim Kneller NC State University NOW 2010.
Quantum trajectories for the laboratory: modeling engineered quantum systems Andrew Doherty University of Sydney.
Efectos de las oscilaciones de sabor sobre el desacoplamiento de neutrinos c ó smicos Teguayco Pinto Cejas AHEP - IFIC Teguayco Pinto Cejas
Chapter 11 Angular Momentum.
Chapter 16 Wave Motion.
Damping of neutrino flavor conversion in the wake of the supernova shock wave by G.L. Fogli, E. Lisi, D. Montanino, A. Mirizzi Based on hep-ph/ :
Department of Physics and Applied Physics , S2010, Lecture 23 Physics I LECTURE 23 5/10/10.
Instabilities and speeded-up flavor equilibration in neutrino clouds Ray Sawyer UCSB.
P461 - particles VII1 Glashow-Weinberg-Salam Model EM and weak forces mix…or just EW force. Before mixing Bosons are massless: Group Boson Coupling Quantum.
Niels Bohr Institute Copenhagen University Eugene PolzikLECTURE 3.
Neutrino Physics - Lecture 2 Steve Elliott LANL Staff Member UNM Adjunct Professor ,
Melbourne Neutrino Theory Workshop, June ROLE OF DENSE MATTER IN COLLECTIVE NEUTRINO TRANSFORMATIONS Sergio Pastor (IFIC Valencia) in collaboration.
Department of Physics and Applied Physics , S2010, Lecture 23 Physics I LECTURE 23 5/10/10.
DAMPING THE FLAVOR PENDULUM BY BREAKING HOMOGENEITY (Alessandro MIRIZZI, Hamburg U.) NOW 2014 Neutrino oscillation workshop Conca Specchiulla, September.
Decay Rates: Pions u dbar Look at pion branching fractions (BF)
Georg Raffelt, MPI Physics, Munich Neutrino Astrophysics and Fundamental Properties, INT, Seattle, June 2015 Crab Nebula Neutrino Flavor Conversion in.
Gravity and Orbits The gravitational force between two objects:
Torque and Simple Harmonic Motion Week 13D2 Today’s Reading Assignment Young and Freedman:
Chapter 13 Vibrations and Waves.
Physics 361 Principles of Modern Physics Lecture 8.
SUPERNOVA NEUTRINOS AT ICARUS
TAUP2007 Sep , 2007 Sendai, Japan Shiou KAWAGOE The Graduate University for Advanced Studies (SOKENDAI) / NAOJ JSPS Research Fellow T. Kajino, The.
Black hole production in preheating Teruaki Suyama (Kyoto University) Takahiro Tanaka (Kyoto University) Bruce Bassett (ICG, University of Portsmouth)
Oscillations & Waves IB Physics. Simple Harmonic Motion Oscillation 4. Physics. a. an effect expressible as a quantity that repeatedly and regularly.
5. Exotic modes of nuclear rotation Tilted Axis Cranking -TAC.
The Elementary Particles. e−e− e−e− γγ u u γ d d The Basic Interactions of Particles g u, d W+W+ u d Z0Z0 ν ν Z0Z0 e−e− e−e− Z0Z0 e−e− νeνe W+W+ Electromagnetic.
Incoherent pair background processes with full polarizations at the ILC Anthony Hartin JAI, Oxford University Physics, Denys Wilkinson Building, Keble.
Heidelberg, 9-12 November 2009 LAUNCH 09 Physics and astrophysics of SN neutrinos: What could we learn ? Alessandro MIRIZZI (Hamburg Universität)
The Cosmological Energy Density of Neutrinos from Oscillation Measurements Kev Abazajian Fermilab June 10, 2003 NuFact 03 – Fifth International Workshop.
An Electron Trapped in A Potential Well Probability densities for an infinite well Solve Schrödinger equation outside the well.
The shockwave impact upon the Diffuse Supernova Neutrino Background GDR Neutrino, Ecole Polytechnique Sébastien GALAIS S. Galais, J. Kneller, C. Volpe.
ASTROPHYSICAL NEUTRINOS STEEN HANNESTAD, Aarhus University GLA2011, JYVÄSKYLÄ e    
Constraining Neutrino Mass Hierarchy and θ 13 with Supernova Neutrino Data Stan Yen SNOLAB EAC August 2009.
H = distance from the axis of rotation to the center of mass Theoretical Derivation of the Period of a Physical Pendulum Period of a Physical Pendulum.
Chapter 11 Angular Momentum. Angular momentum plays a key role in rotational dynamics. There is a principle of conservation of angular momentum.  In.
Georg Raffelt, MPI Physics, Munich17 th Lomonosov Conference, Moscow, 20–26 Aug 2015 Supernova Neutrinos Нейтрино от сверхновые Georg Raffelt, 17 th Lomonosov.
Chapters 16, 17 Waves.
Lecture 23: Applications of the Shell Model 27/11/ Generic pattern of single particle states solved in a Woods-Saxon (rounded square well)
S.P.Mikheyev INR RAS1 ``Mesonium and antimesonium’’ Zh. Eksp.Teor. Fiz. 33, 549 (1957) [Sov. Phys. JETP 6, 429 (1957)] translation B. Pontecorvo.
S.P.Mikheyev (INR RAS) S.P.Mikheyev (INR RAS)2  Introduction.  Vacuum oscillations.  Oscillations in matter.  Adiabatic conversion.  Graphical.
Prospects of supernova neutrino observation by large detectors Hisakazu Minakata Tokyo Metropolitan University Hisakazu Minakata Tokyo Metropolitan University.
Georg Raffelt, Max-Planck-Institut für Physik, München LowNu 2009, Oct 2009, Reims, France Crab Nebula Neutrino Champagne, LowNu2009, 19  21 Oct.
Precise calculation of the relic neutrino density Sergio Pastor (IFIC) ν JIGSAW 2007 TIFR Mumbai, February 2007 In collaboration with T. Pinto, G, Mangano,
September 10, 2002M. Fechner1 Energy reconstruction in quasi elastic events unfolding physics and detector effects M. Fechner, Ecole Normale Supérieure.
Basudeb Dasgupta, JIGSAW 2007 Mumbai Phase Effects in Neutrinos Conversions at a Supernova Shockwave Basudeb Dasgupta TIFR, Mumbai Joint Indo-German School.
Cristina VOLPE (AstroParticule et Cosmologie -APC) Open issues in neutrino flavor conversion in media.
Rencontres de Moriond, March 2010 Electroweak Interactions and Unified Theories Neutrinos from Supernovae Basudeb Dasgupta Max Planck Institute for.
Cosmological aspects of neutrinos (II) Sergio Pastor (IFIC Valencia) JIGSAW 2007 TIFR Mumbai, February 2007 ν.
Molecular Spectroscopy
Astrophysical Constraints on Secret Neutrino Interactions
The units of g(): (energy)-1
SOLAR ATMOSPHERE NEUTRINOS
International School of Nuclear Physics 39th Course, Erice-Sicily, Sep
neutrino flavor conversion in media
Non-Standard Interactions and Neutrino Oscillations in Core-Collapse Supernovae Brandon Shapiro.
Neutrino oscillations with the T2K experiment
SOLAR ATMOSPHERE NEUTRINOS
Diatomic molecules
Neutrino diffraction : finite-size correction to Fermi’s golden rule k
The neutrino mass hierarchy and supernova n
Presentation transcript:

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany JIGSAW 07, Feb 2007, TIFR, Mumbai, India Collective Supernova Neutrino Oscillations Georg Raffelt, MPI Physik, Munich, Germany JIGSAW 07, 12  23 Feb 2007, TIFR, Mumbai, India

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany JIGSAW 07, Feb 2007, TIFR, Mumbai, India Sanduleak  Large Magellanic Cloud Distance 50 kpc ( light years) Tarantula Nebula Supernova 1987A 23 February 1987 Supernova 1987A 23 February 1987 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany JIGSAW 07, Feb 2007, TIFR, Mumbai, India

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany JIGSAW 07, Feb 2007, TIFR, Mumbai, India Neutrino Signal of Supernova 1987A Within clock uncertainties, signals are contemporaneous Kamiokande-II (Japan) Water Cherenkov detector 2140 tons Clock uncertainty  1 min Irvine-Michigan-Brookhaven (US) Water Cherenkov detector 6800 tons Clock uncertainty  50 ms Baksan Scintillator Telescope (Soviet Union), 200 tons Random event cluster ~ 0.7/day Clock uncertainty +2/-54 s

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany JIGSAW 07, Feb 2007, TIFR, Mumbai, India Flavor-Dependent Fluxes and Spectra Broad characteristics Duration a few seconds Duration a few seconds  E  ~ 10  20 MeV  E  ~ 10  20 MeV  E  increases with time  E  increases with time Hierarchy of energies Hierarchy of energies Approximate equipartition Approximate equipartition of energy between flavors of energy between flavors Livermore numerical model ApJ 496 (1998) 216 Prompt e deleptonizationburst e e x _ However, in traditional simulations transport of  and  schematic Incomplete microphysics Incomplete microphysics Crude numerics to couple Crude numerics to couple neutrino transport with neutrino transport with hydro code hydro code

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany JIGSAW 07, Feb 2007, TIFR, Mumbai, India Flavor-Dependent Neutrino Fluxes vs. Equation of State Kitaura, Janka & Hillebrandt, “Explosions of O-Ne-Mg cores, the Crab supernova, and subluminous Type II-P supernovae”, astro-ph/ Wolff & Hillebrandt nuclear EoS (stiff)Lattimer & Swesty nuclear EoS (soft)

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany JIGSAW 07, Feb 2007, TIFR, Mumbai, India Level-Crossing Diagram in a SN Envelope Dighe & Smirnov, Identifying the neutrino mass spectrum from a supernova neutrino burst, astro-ph/ Normal mass hierarchy Inverted mass hierarchy

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany JIGSAW 07, Feb 2007, TIFR, Mumbai, India Self-Induced Flavor Oscillations of SN Neutrinos Survival probability e NormalHierarchy atm  m 2  13  close to Chooz limit InvertedHierarchy No nu-nu effect No MSWeffect MSWeffect Realistic Bipolarcollectiveoscillations(single-angle approximation) approximation) MSW Realistic nu-nu effect MSWeffect

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany JIGSAW 07, Feb 2007, TIFR, Mumbai, India Matrices of Density in Flavor Space Neutrino quantum field Neutrino quantum field Spinors in flavor space Spinors in flavor space Quantum states (amplitudes) Variables for discussing neutrino flavor oscillations “Matrices of densities” (analogous to occupation numbers) “Quadratic” quantities, required for dealing with decoherence, collisions, Pauli-blocking, nu-nu-refraction, etc. Sufficient for “beam experiments,” but confusing “wave packet debates” for quantifying decoherence effects Destruction operators for (anti)neutrinos Neutrinos Anti-neutrinos

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany JIGSAW 07, Feb 2007, TIFR, Mumbai, India General Equations of Motion Usual matter effect with Vacuum oscillations Vacuum oscillations M is neutrino mass matrix M is neutrino mass matrix Note opposite sign between Note opposite sign between neutrinos and antineutrinos neutrinos and antineutrinos Nonlinear nu-nu effects are important when nu-nu interaction energy exceeds typical vacuum oscillation frequency (Do not compare with matter effect!)

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany JIGSAW 07, Feb 2007, TIFR, Mumbai, India Two-Flavor Neutrino Oscillations in Vacuum “Magnetic field” in flavor space Polarization Polarization vector vector or different normalization  i Pauli matrices Neutrino flavor oscillation as a spin precession Neutrinos Spin 1/2 1/2Magneticmoment +  m 2 /2p Anti-neutrinos Spin 1/2 1/2Magneticmoment -  m 2 /2p x yz

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany JIGSAW 07, Feb 2007, TIFR, Mumbai, India Synchronizing Oscillations by Neutrino Interactions Vacuum oscillation frequency of mode with momentum p ~ E Modified in a medium by the usual weak-interaction potential In an ensemble with a broad momentum distribution, the p-dependent oscillation frequency quickly leads to kinematical flavor decoherence In a dense neutrino gas, all modes go with the same frequency: “Synchronized flavor oscillations” or flavor oscillations” or“self-maintained coherence” coherence”

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany JIGSAW 07, Feb 2007, TIFR, Mumbai, India Bipolar Oscillations of Neutrinos in a Box Dense gas of and Take equal densities with Assume only one energy with Small mixing angle, inverted hierarchy Survival probability of both and Time scale set by Time scale set by “Plateau phases” mean exponential “Plateau phases” mean exponential growth, increase by  log(  ) growth, increase by  log(  ) Reduced mixing angle by ordinary Reduced mixing angle by ordinary matter unimportant matter unimportantNote: This is no real “flavor conversion”, Rather a “collective pair conversion” Time scale proportional to

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany JIGSAW 07, Feb 2007, TIFR, Mumbai, India Synchronized vs. Bipolar Oscillations Asymmetric system, initially consisting of unequal numbers with equal energies (equal oscillation frequency  ) and Free oscillations ≪ Bipolar oscillations ≪≪ Synchronized oscillations ≪

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany JIGSAW 07, Feb 2007, TIFR, Mumbai, India Synchronized vs. Bipolar Oscillations Free oscillations ≪ Bipolar oscillations ≪≪ Synchronized oscillations ≪ Energy of the system: E pot always dominates E kin always dominates

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany JIGSAW 07, Feb 2007, TIFR, Mumbai, India Synchronized vs. Bipolar Oscillations Free oscillations ≪ Bipolar oscillations ≪≪ Synchronized oscillations ≪ SupernovaCore R = 40  60 km R  200 km

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany JIGSAW 07, Feb 2007, TIFR, Mumbai, India Equations of Motion for Two-Flavor Case Isotropic neutrinos, ignore matter, only one neutrino energy Sum Diff. Neglect first term for  Length S = 2 approximately conserved Tilt angle of S relative to B-direction Pendulum in flavour space Inverted (unstable) for inverted hierarchy Inverted (unstable) for inverted hierarchy Stable (harmonic oscillator) otherwise Stable (harmonic oscillator) otherwise

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany JIGSAW 07, Feb 2007, TIFR, Mumbai, India Impact of Ordinary Matter Matter has identical effect Matter has identical effect on nus and anti-nus on nus and anti-nus In rotating frame (frequency ) In rotating frame (frequency ) no matter effect, rotating B-field no matter effect, rotating B-field For inverted hierarchy: For inverted hierarchy: “driven” inverted harmonic “driven” inverted harmonic oscillator, exponentially growing oscillator, exponentially growing amplitude amplitude Exponentially growing phase, scales with Analytic solution in: Hannestad, Raffelt, Sigl & Wong, Self-induced conversion in dense neutrino gases: Pendulum in flavour space astro-ph/

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany JIGSAW 07, Feb 2007, TIFR, Mumbai, India Asymmetric System as a Pendulum with Spin Neutrinos and anti-neutrinos New variables Essentially particle number ( ) Lepton number ( ) Equations of motion Conserved quantities Spherical pendulum Energy Angular momentum along force direction Angular momentum along pendulum Interpretation as pendulum with spin Pendulum orientation Angular momentum Moment of inertia Spin Equations of motion once more Precession (synchronized oscillations) Pendulum (bipolar oscillations) NO FREE LUNCH Net flavor lepton number along mass Net flavor lepton number along mass direction is conserved direction is conserved “Bipolar conversions” are PAIR conversions, “Bipolar conversions” are PAIR conversions, no net flavor-lepton number violation no net flavor-lepton number violation True flavor conversion only caused by True flavor conversion only caused by vacuum flavor oscillation effect vacuum flavor oscillation effect No unusual enhancement No unusual enhancement (unlike MSW effect) (unlike MSW effect)

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany JIGSAW 07, Feb 2007, TIFR, Mumbai, India Pendulum in Flavor Space Mass direction in flavor space Precession (synchronized oscillation) Nutation(bipolar oscillation) oscillation) Spin (Lepton Asymmetry) Very asymmetric system Very asymmetric system - Large spin - Large spin - Almost pure precession - Almost pure precession - Fully synchronized oscillations - Fully synchronized oscillations Perfectly symmetric system Perfectly symmetric system - No spin - No spin - Simple spherical pendulum - Simple spherical pendulum - Fully bipolar oscillation - Fully bipolar oscillation Polarization vector for neutrinos plus antineutrinos ≫

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany JIGSAW 07, Feb 2007, TIFR, Mumbai, India Toy Supernova in “Single-Angle” Approximation Bipolar Oscillations Assume 80% anti-neutrinos Assume 80% anti-neutrinos Vacuum oscillation frequency Vacuum oscillation frequency  = 0.3 km  1  = 0.3 km  1 Neutrino-neutrino interaction Neutrino-neutrino interaction energy at nu sphere (r = 10 km) energy at nu sphere (r = 10 km)  = 0.3  10 5 km  1  = 0.3  10 5 km  1 Falls off approximately as r  4 Falls off approximately as r  4 (geometric flux dilution and nus (geometric flux dilution and nus become more co-linear) become more co-linear) Decline of oscillation amplitude explained in pendulum analogy by inreasing moment of inertia (Hannestad, Raffelt, Sigl & Wong astro-ph/ ) astro-ph/ )

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany JIGSAW 07, Feb 2007, TIFR, Mumbai, India Nonlinear Neutrino Conversion in Supernovae Survival probability e NormalHierarchy atm  m 2  13  close to Chooz limit InvertedHierarchy Duan, Fuller, Carlson, Qian: “Simulation of Coherent Non-Linear Neutrino Duan, Fuller, Carlson, Qian: “Simulation of Coherent Non-Linear Neutrino Flavor Transformation in the Supernova Environment. 1. Correlated Flavor Transformation in the Supernova Environment. 1. Correlated Neutrino Trajectories”, astro-ph/ See also: astro-ph/ Neutrino Trajectories”, astro-ph/ See also: astro-ph/

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany JIGSAW 07, Feb 2007, TIFR, Mumbai, India Flux Term as a Source of Decoherence General two-flavor expression Axial symmetry around some direction, e.g., supernova radial direction Density (isotropic) term Responsible for usual collective phenomena (“self-maintained coherence”) coherence”) Flux term Responsible for kinematical decoherence (“self-induced decoherence”) decoherence”) Raffelt & Sigl, Self-induced decoherence in dense neutrino gases hep-ph/

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany JIGSAW 07, Feb 2007, TIFR, Mumbai, India Kinematical Decoherence - Symmetric Case InvertedHierarchy Isotropic (single angle) Large flux (“half isotropic”) NormalHierarchy

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany JIGSAW 07, Feb 2007, TIFR, Mumbai, India Inverted Hierarchy - Asymmetric Case (  = 0.8) Single angle Multi angle Polarizationvectors Length Length z-component z-component Energycomponents

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany JIGSAW 07, Feb 2007, TIFR, Mumbai, India Inverted Hierarchy - Asymmetric Case (  = 0.6) Single angle Multi angle Polarizationvectors Length Length z-component z-component Energycomponents

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany JIGSAW 07, Feb 2007, TIFR, Mumbai, India Normal Hierarchy - Asymmetric Case (  = 0.8) Single angle Multi angle Polarizationvectors Length Length z-component z-component Energycomponents

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany JIGSAW 07, Feb 2007, TIFR, Mumbai, India Normal Hierarchy - Asymmetric Case (  = 0.9) Single angle Multi angle Polarizationvectors Length Length z-component z-component Energycomponents

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany JIGSAW 07, Feb 2007, TIFR, Mumbai, India Nonlinear Neutrino Conversion in Supernovae Survival probability e NormalHierarchy atm  m 2  13  close to Chooz limit InvertedHierarchy Duan, Fuller, Carlson, Qian: “Simulation of Coherent Non-Linear Neutrino Duan, Fuller, Carlson, Qian: “Simulation of Coherent Non-Linear Neutrino Flavor Transformation in the Supernova Environment. 1. Correlated Flavor Transformation in the Supernova Environment. 1. Correlated Neutrino Trajectories”, astro-ph/ See also: astro-ph/ Neutrino Trajectories”, astro-ph/ See also: astro-ph/

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany JIGSAW 07, Feb 2007, TIFR, Mumbai, India Different Oscillation Modes in Supernovae Center Neutrinosphere ~15 0 R [km] ~10 4 ~200 Bipolar oscillations for inverted hierarchy Fluxes H-Resonance (atm) Freestreaming ≫ ≪ Matter effect important Matter effect important Usually suppresses mixing angle Usually suppresses mixing angle MSW Neutrino-neutrino collective effects strong ~10 5 L-Resonance (sol) MSW Synchronisedoscillations Little effect because of matter-suppressed mixing angle ~80 Importance of bipolar oscillations in this SN region first noted by Duan, Fuller & Qian astro-ph/

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany JIGSAW 07, Feb 2007, TIFR, Mumbai, India Papers on collective neutrino oscillations 1992 Flavor off-diagonal refractive index Numerical & analytic studies, but not much impact (nobody really understood) Flavor equilibration of cosmological neutrinos with chemical potential before BBN epoch SN neutrino oscillations and r-process nucleosynthesis (everybody missed the main point) point) “Bipolar” oscillations crucial for SN neutrinos Pantaleone, PLB 287(1992) 128 Samuel, Kostolecký & Pantaleone in various combinations: PLB 315:46 & 318:127 (1993), 385:159 (1996) PRD 48:1462 (1993), 49:1740 (1994), 52:621 & 3184 (1995), 53:5382 (1996), 58: (1998) Pastor, Raffelt & Semikoz, hep-ph/ Lunardini & Smirnov, hep-ph/ Dolgov et al., hep-ph/ Wong, hep-ph/ Abazajian, Beacom & Bell, astro-ph/ Pantaleone, astro-ph/ Qian & Fuller, astro-ph/ Sigl, astro-ph/ Pastor & Raffelt, astro-ph/ Balantekin & Yüksel, astro-ph/ Duan, Fuller & Qian, astro-ph/ Duan, Fuller, Carlson & Qian, astro-ph/ Hannestad, Raffelt, Sigl & Wong, astro-ph/ Raffelt & Sigl, hep-ph/