• Antimicrobial proteins • Fever

Slides:



Advertisements
Similar presentations
Chapter 43 Notes The Body’s Defenses. Nonspecific Defenses Against Infection The skin and mucous membranes provide first-line barriers to infection -skin.
Advertisements

Immune System.
Ch. 43 The Immune System.
The Immune System.
The Body’s Defenses Ch. 43.
Lymphatic Vessels Carry lymph away from tissues Lymphatic capillaries More permeable than blood capillaries Epithelium functions as series of one-way valves.
The Lymphatic System Lymphatic system functions
Figure 12.3 Distribution of lymphatic vessels and lymph nodes.
Lymphatic System and Immunity:. Lymphatic System Lymph Lymphatic vessels Lymphatic tissue Lymphatic nodules Lymph nodes Tonsils Spleen Thymus.
Lymphatic System and Immunity:. Lymphatic System Lymph Lymphatic vessels Lymphatic tissue Lymphatic nodules Lymph nodes Tonsils Spleen Thymus.
Innate Defenses Surface barriers – Skin, mucous membranes, and their secretions ________________________________________ to most microorganisms _________________________________________.
Immune Response Adaptive Immune Response. Adaptive Immune 2 Adaptive Immune Response Humoral Immunity B cells Cellular Immunity T cells.
PowerPoint ® Lecture Slides prepared by Janice Meeking, Mount Royal College C H A P T E R Copyright © 2010 Pearson Education, Inc. 21 The Immune System:
Lymphatic System Questions 1. Transports excess fluid away from tissues and return it to the bloodstream. Also help defend the body against infections.
Immunity Innate & Adaptive.
1 Chapter 20 Defenses Against Disease: The Immune System.
Immune System Chapter 43. What you need to know! Several elements of an innate immune response. The differences between B and T cells relative to their.
Specific Immunity Destroy specific antigens that invade the body.
PowerPoint ® Lecture Slides prepared by Barbara Heard, Atlantic Cape Community College C H A P T E R © 2013 Pearson Education, Inc.© Annie Leibovitz/Contact.
Chapter 21: The Immune System. Hans Buchner – German bacteriologist who in the 1880s proposed that anti-bacterial proteins existed in blood…. start of.
Part II Biology 2122 Chapter 21
© 2012 Pearson Education, Inc. Lecture by Edward J. Zalisko PowerPoint Lectures for Campbell Biology: Concepts & Connections, Seventh Edition Reece, Taylor,
Chapter 12 Immunity and Body Defenses
Innate (Non-Specific) Immunity
Bellwork Discuss with your group what you think is happening in the following processes. Why does your body undergo an allergic reaction? Why do some.
Ch 43- Immune system.
Adaptive immunity 2440 spring lecture #7 5/27/10.
Phagocytes: Macrophages _____________________________ develop from ___________________________to become the chief phagocytic cells Free macrophages wander.
18 Animal Defense Systems Animal defense systems are based on the distinction between self and nonself. There are two general types of defense mechanisms:
The Immune System Mariela & Julia.
Immunology Chapter 43. Innate Immunity Present and waiting for exposure to pathogens Non-specific External barriers and internal cellular and chemical.
Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Human Anatomy & Physiology SEVENTH EDITION Elaine N. Marieb Katja Hoehn PowerPoint.
PowerPoint ® Lecture Slides prepared by Janice Meeking, Mount Royal College C H A P T E R Copyright © 2010 Pearson Education, Inc. 21 The Immune System:
PowerPoint ® Lecture Slides prepared by Barbara Heard, Atlantic Cape Community College C H A P T E R © 2013 Pearson Education, Inc.© Annie Leibovitz/Contact.
The Immune System: Adaptive Body Defenses Part B
Body Defenses and Immunity. The Lymphatic System Consists of two semi- independent parts Lymphatic vessels Lymphoid tissues and organs Lymphatic system.
Immunity Biology 2122 Chapter 21. Introduction Innate or nonspecific defense: – First-line of defense – Second-line of defense The adaptive or specific.
Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings Human Anatomy & Physiology, Sixth Edition Elaine N. Marieb PowerPoint ® Lecture.
The Immune System Dr. Jena Hamra.
Pages  Soluble proteins secreted by activated B cells or by their plasma- cell offspring (in response to an antigen)  They are capable of binding.
Immune System Chapter 43. Types of Invaders _________: a bacterium, fungus, virus, or other disease causing agent  Antigen: any foreign molecule or protein.
Function of the Immune System
Immune system has two intrinsic systems
Ch 43- Immune system.
Major Events in the Local Inflammatory Response.
Immunity. Body Defenses First line - barriers Skin and mucous membranes Flushing action –Antimicrobial substances Lysozyme, acids, salts, normal microbiota.
PowerPoint ® Lecture Slides prepared by Barbara Heard, Atlantic Cape Community College C H A P T E R © 2013 Pearson Education, Inc.© Annie Leibovitz/Contact.
Immune System Study ppt For Biology 260 From Marieb A & P.
Figure 21.1 Overview of innate and adaptive defenses.
The Immune System: Innate and Adaptive Body Defenses: Part A
The Immune System. Protects our bodies from pathogens – disease causing agents May be bacteria, viruses, protists, fungi, etc Response could be nonspecific.
PowerPoint ® Lecture Slides prepared by Barbara Heard, Atlantic Cape Community College C H A P T E R © 2013 Pearson Education, Inc.© Annie Leibovitz/Contact.
The Lymphatic System and Body Defenses
Figure 43.1 An overview of the body's defenses
The Basics of Immunology
Adaptive Defense System
• Antimicrobial proteins • Fever
The Immune System Part D
The immune system Chapter 43.
Chapter 43 Notes The Body’s Defenses.
Human Anatomy and Physiology II
The immune system Chapter 43.
Biology 212 Anatomy & Physiology I
Immune System Chapter 14.
The Immune System: Innate and Adaptive:Body Defenses: Part A
Immune System.
Biology 212 Anatomy & Physiology I
The body’s defenders.
The Immune System: Innate and Adaptive:Body Defenses: Part A
Presentation transcript:

• Antimicrobial proteins • Fever Surface barriers • Skin • Mucous membranes Innate defenses Internal defenses • Phagocytes • NK cells • Inflammation • Antimicrobial proteins • Fever Humoral immunity • B cells Adaptive defenses Cellular immunity • T cells Figure 21.1

Inflammatory Response Macrophages and epithelial cells of boundary tissues bear Toll-like receptors (TLRs) TLRs recognize specific classes of infecting microbes Activated TLRs trigger the release of cytokines that promote inflammation

Phagocyte Mobilization Steps for phagocyte mobilization Leukocytosis: release of neutrophils from bone marrow in response to leukocytosis-inducing factors from injured cells Margination: neutrophils cling to the walls of capillaries in the inflamed area Diapedesis of neutrophils Chemotaxis: inflammatory chemicals (chemotactic agent) promote positive chemotaxis of neutrophils

Figure 21.3 Innate defenses Internal defenses Tissue injury Release of chemical mediators (histamine, complement, kinins, prostaglandins, etc.) Release of leukocytosis- inducing factor Leukocytosis (increased numbers of white blood cells in bloodstream) Vasodilation of arterioles Increased capillary permeability Attract neutrophils, monocytes, and lymphocytes to area (chemotaxis) Leukocytes migrate to injured area Local hyperemia (increased blood flow to area) Capillaries leak fluid (exudate formation) Margination (leukocytes cling to capillary walls) Initial stimulus Physiological response Signs of inflammation Diapedesis (leukocytes pass through capillary walls) Leaked protein-rich fluid in tissue spaces Leaked clotting proteins form interstitial clots that wall off area to prevent injury to surrounding tissue Result Phagocytosis of pathogens and dead tissue cells (by neutrophils, short-term; by macrophages, long-term) Heat Redness Pain Swelling Locally increased temperature increases metabolic rate of cells Possible temporary limitation of joint movement Temporary fibrin patch forms scaffolding for repair Pus may form Area cleared of debris Healing Figure 21.3

Phagocyte Mobilization Steps for phagocyte mobilization Leukocytosis: release of neutrophils from bone marrow in response to leukocytosis-inducing factors from injured cells Margination: neutrophils cling to the walls of capillaries in the inflamed area Diapedesis of neutrophils Chemotaxis: inflammatory chemicals (chemotactic agent) promote positive chemotaxis of neutrophils

Leukocytosis. Neutrophils enter blood from bone marrow. Innate defenses Internal defenses Inflammatory chemicals diffusing from the inflamed site act as chemotactic agents. Capillary wall Basement membrane Endothelium 1 Leukocytosis. Neutrophils enter blood from bone marrow. Figure 21.4, step 1

Leukocytosis. Neutrophils enter blood from bone marrow. Innate defenses Internal defenses Inflammatory chemicals diffusing from the inflamed site act as chemotactic agents. Capillary wall Basement membrane Endothelium 1 Leukocytosis. Neutrophils enter blood from bone marrow. 2 Margination. Neutrophils cling to capillary wall. Figure 21.4, step 2

Leukocytosis. Neutrophils enter blood from bone marrow. Innate defenses Internal defenses Inflammatory chemicals diffusing from the inflamed site act as chemotactic agents. Capillary wall Basement membrane Endothelium 1 Leukocytosis. Neutrophils enter blood from bone marrow. 2 Margination. Neutrophils cling to capillary wall. 3 Diapedesis. Neutrophils flatten and squeeze out of capillaries. Figure 21.4, step 3

Chemotaxis. Neutrophils follow chemical trail. Innate defenses Internal defenses Inflammatory chemicals diffusing from the inflamed site act as chemotactic agents. Chemotaxis. Neutrophils follow chemical trail. 4 Capillary wall Basement membrane Endothelium 1 Leukocytosis. Neutrophils enter blood from bone marrow. 2 Margination. Neutrophils cling to capillary wall. Diapedesis. Neutrophils flatten and squeeze out of capillaries. 3 Figure 21.4, step 4

Adaptive immune response Adaptive Defenses Adaptive immune response Is specific Is systemic Has memory Two separate overlapping arms Humoral (antibody-mediated) immunity Cellular (cell-mediated) immunity

Antigens Substances that can mobilize the adaptive defenses and provoke an immune response Most are large, complex molecules not normally found in the body (nonself)

Antigenic Determinants Parts of antigen that are immunogenic Antibodies and lymphocyte receptors bind to them

Antigenic determinants binding sites Antigenic determinants Antibody A Antigen Antibody B Antibody C Figure 21.7

Haptens (Incomplete Antigens) Small molecules (peptides, nucleotides, and hormones) Not immunogenic by themselves Are immunogenic when attached to body proteins Cause the immune system to mount a harmful attack Examples: poison ivy, animal dander, detergents, and cosmetics

Self-Antigens: MHC Proteins Proteins (self-antigens) on cell surface of s Example: MHC proteins Coded for by genes of major histocompatibility complex (MHC) and unique

MHC Proteins Classes Class I MHC proteins, on most all cells Class II MHC proteins, on certain cells in immune response

Cells of the Adaptive Immune System Two types of lymphocytes B lymphocytes (B cells)—humoral immunity T lymphocytes (T cells)—cell-mediated immunity Antigen-presenting cells (APCs) Do not respond to specific antigens Play essential auxiliary roles in immunity

Lymphocytes destined to become T cells Humoral immunity Red bone marrow: site of lymphocyte origin Adaptive defenses Cellular immunity Primary lymphoid organs: site of development of immunocompetence as B or T cells Immature lymphocytes Red bone marrow Secondary lymphoid organs: site of antigen encounter, and activation to become effector and memory B or T cells Lymphocytes destined to become T cells migrate (in blood) to the thymus and develop immunocompetence there. B cells develop immunocompetence in red bone marrow. 1 Thymus Bone marrow Immunocompetent but still naive lymphocytes leave the thymus and bone marrow. They “seed” the lymph nodes, spleen, and other lymphoid tissues where they encounter their antigen. 2 Lymph nodes, spleen, and other lymphoid tissues Antigen-activated immunocompetent lymphocytes (effector cells and memory cells) circulate continuously in the bloodstream and lymph and throughout the lymphoid organs of the body. 3 Figure 21.8

T Cells T cells mature in the thymus under negative and positive selection pressures Positive selection Selects T cells capable of binding to self-MHC proteins (MHC restriction) Negative selection Prompts apoptosis of T cells that bind to self-antigens displayed by self-MHC Ensures self-tolerance

Positive selection: T cells must recognize self major Adaptive defenses Positive selection: T cells must recognize self major histocompatibility proteins (self-MHC). Antigen- presenting thymic cell Failure to recognize self-MHC results in apoptosis (death by cell suicide). Recognizing self-MHC results in MHC restriction—survivors are restricted to recognizing antigen on self-MHC. Survivors proceed to negative selection. Recognizing self-antigen results in apoptosis. This eliminates self-reactive T cells that could cause autoimmune diseases. Failure to recognize (bind tightly to) self-antigen results in survival and continued maturation. MHC Self-antigen T cell receptor Developing T cell Cellular immunity Negative selection: T cells must not recognize self-antigens. Figure 21.9

Antigen Receptor Diversity Lymphocytes make up to a billion different types of antigen receptors Coded for by ~25,000 genes Gene segments are shuffled by somatic recombination Genes determine which foreign substances the immune system will recognize and resist

Antigen-Presenting Cells (APCs) Engulf antigens Present fragments of antigens to T cells Major types Dendritic in connective tissues and epidermis Macrophages in connective tissues and lymphoid organs B cells

Macrophages and Dendritic Cells Present antigens and activate T cells Macrophages mostly remain fixed in the lymphoid organs Dendritic cells internalize pathogens and enter lymphatics to present the antigens to T cells in lymphoid organs Activated T cells release chemicals that Prod macrophages to become insatiable phagocytes and to secrete bactericidal chemicals

Adaptive defenses Humoral immunity Primary response (initial encounter with antigen) Antigen Antigen binding to a receptor on a specific B lymphocyte (B lymphocytes with non-complementary receptors remain inactive) Proliferation to form a clone Activated B cells Plasma cells (effector B cells) Memory B cell— primed to respond to same antigen Secreted antibody molecules Figure 21.11 (1 of 2)

Clonal Selection B cell is activated when antigens bind to its surface receptors and cross-link them Receptor-mediated endocytosis of cross-linked antigen-receptor complexes occurs Stimulated B cell grows to form a clone of identical cells bearing the same antigen-specific receptors (T cells are usually required to help B cells achieve full activation)

Fate of the Clones Secreted antibodies Circulate in blood or lymph Bind to free antigens Mark the antigens for destruction

Primary immune response Immunological Memory Primary immune response Occurs on the first exposure to a specific antigen Lag period: three to six days Peak levels of plasma antibody are reached in 10 days Antibody levels then decline

Adaptive defenses Humoral immunity Primary response (initial encounter with antigen) Antigen Antigen binding to a receptor on a specific B lymphocyte (B lymphocytes with non-complementary receptors remain inactive) Proliferation to form a clone Activated B cells Plasma cells (effector B cells) Memory B cell— primed to respond to same antigen Secreted antibody molecules Subsequent challenge by same antigen results in more rapid response Secondary response (can be years later) Clone of cells identical to ancestral cells Plasma cells Secreted antibody molecules Memory B cells Figure 21.11

Secondary immune response to antigen A is faster and larger; primary immune response to antigen B is similar to that for antigen A. Primary immune response to antigen A occurs after a delay. Anti- bodies to B Anti- bodies to A First exposure to antigen A Second exposure to antigen A; first exposure to antigen B Time (days) Figure 21.12

Humoral immunity Active Passive Naturally acquired Artificially Infection; contact with pathogen Vaccine; dead or attenuated pathogens Antibodies pass from mother to fetus via placenta; or to infant in her milk Injection of immune serum (gamma globulin) Figure 21.13