1 Noticing John Mason Stockholm May 2013 The Open University Maths Dept University of Oxford Dept of Education Promoting Mathematical Thinking.

Slides:



Advertisements
Similar presentations
Reasoning Mathematically
Advertisements

FellowSHIP, StewardSHIP & SponsorSHIP. I put my hand in yours and together we can do what we could never do alone. No longer is there a sense of hopelessness.
Joyfulness Vs. Self-pity
1 Discerning In and Between Theories in Mathematics Education Discerning In and Between Theories in Mathematics Education John Mason Oxford Nov 2010 The.
E XPLORING A LGEBRA AND THE O PERATIONS Session 1 - Noticing.
1 Noticing: the key to teaching, learning and research John Mason Modena & Napoli 2007.
1 Essential Mathematics: Core Awarenesses & Threshold Concpets Core Awarenesses & Threshold Concpets John Mason NCETM London Nov 2011 The Open University.
1 Where is the Reality of Algebra & Geometry ? John Mason Surrey HoDs Feb 2009 The Open University Maths Dept University of Oxford Dept of Education.
1 Energies of Inquiry: what is the nature, form and role of different forms of energy required for different forms of mathematical and pedagogical inquiry?
1 What is the Discipline of Mathematics Education? Essential Maths & Mathematical Essences John Mason Hobart 2007.
1 Learner Generated Examples in the Teaching of Mathematics John Mason Grahamstown May 2009 The Open University Maths Dept University of Oxford Dept of.
1 Phenomenal Mathematics Phenomenal Mathematics John Mason AAMT-MERGA Alice Springs July The Open University Maths Dept University of Oxford Dept.
1 Making Use of Students’ Natural Powers to Think Mathematically John Mason Grahamstown May 2009 The Open University Maths Dept University of Oxford Dept.
1 Asking Questions in order to promote Mathematical Reasoning John Mason Hampshire Nov 2009 The Open University Maths Dept University of Oxford Dept of.
1 Making Use of Mental Imagery John Mason East London June 2010 The Open University Maths Dept University of Oxford Dept of Education Promoting Mathematical.
Practitioner Research & The Discipline of Noticing Trondheim Nov 2002.
1 Making the Most of Mathematical Tasks John Mason Overton Jan 2011 The Open University Maths Dept University of Oxford Dept of Education Promoting Mathematical.
1 Fundamental Constructs Underpinning Pedagogic Actions in Mathematics Classrooms John Mason March 2009 The Open University Maths Dept University of Oxford.
1 Mathematics: with good reason John Mason Exeter April 2010 The Open University Maths Dept University of Oxford Dept of Education.
Relative Clauses 2 NI
1 John Mason IMEC9 Sept 2007 Using Theoretical Constructs to Inform Teaching.
1 With and Across the Grain: making use of learners’ powers to detect and express generality London Mathematics Centre June 2006.
Keystone Problems… Keystone Problems… next Set 19 © 2007 Herbert I. Gross.
1 Responsive & Responsible Teaching: so, what is your theory? Mathematics Education Research and Mathematics Teaching: Illusions, Reality, and Opportunities.
UNIT 9. CLIL THINKING SKILLS
By John C. Maxwell Failing Forward Beginning. What is “failure?” Failure is often defined as, “falling short of one’s goals.” Who defines those goals?
1 Reasoning Reasonably in Mathematics John Mason Matematikbiennalen Umeä Sweden 2014 The Open University Maths Dept University of Oxford Dept of Education.
1 A Rational Approach to Fractions and Rationals John Mason July 2015 The Open University Maths Dept University of Oxford Dept of Education Promoting Mathematical.
1 Working with the Whole Psyche: what can a teacher do for students? Nurturing Reflective Learners Mathematically in Secondary School Working with the.
1 These are a Few of my Favourite Things John Mason SFU Vancouver Nov The Open University Maths Dept University of Oxford Dept of Education Promoting.
1 Imagine That! John Mason ATM branch Bath Nov The Open University Maths Dept University of Oxford Dept of Education Promoting Mathematical Thinking.
1 A Lesson Without the Opportunity for Learners to Generalise …is NOT a Mathematics lesson! John Mason ‘Powers’ Norfolk Mathematics Conference Norwich.
1 Generalisation as the Core and Key to Learning Mathematics John Mason PGCE Oxford Feb The Open University Maths Dept University of Oxford Dept.
1 Reasoning in the Mathematics Curriculum Anne Watson & John Mason Prince’s Trust Maths CPD London Mar 2 Manchester Mar The Open University Maths.
Technology in the classroom. UM weather Great way to begin a day or class –Links to 300 weather sites –Links to 700 web cams to view weather –Radar and.
Inquiry-based Learning Linking Teaching with Learning.
1 While you are waiting: Warm Up 1: in a certain club there are 47 people altogether, of whom 31 are poets and 29 are painters. How many are both? Warm.
1 Reasoning Reasonably in Mathematics John Mason EARCOME 6 Phuket 2013 The Open University Maths Dept University of Oxford Dept of Education Promoting.
1 Transformations of the Number-Line an exploration of the use of the power of mental imagery and shifts of attention John Mason MEI Keele June 2012 The.
C ONSCIENCE. C ONSCIENCE IN THE T EACHINGS OF THE C ATHOLIC C HURCH The Catholic tradition believes that our conscience is much more than an ‘internal.
1 Responsive, Reflective & Responsible teaching John Mason AIMSSEC ACE Yr 2 Jan 2013 The Open University Maths Dept University of Oxford Dept of Education.
History as an Area of Knowledge.
BECOMING MORE THOUGHTFUL AN AGENDA FOR PROFESSIONAL DEVELOPMENT c. Neil Haigh.
FROM TEACH LIKE A CHAMPION Setting High Expectations.
Meet the teacher – Khalsa Primary School Reception.
HOW TO SUPPORT YOUR CHILD MATH HOMEWORK. PURPOSES OF HOMEWORK : Independent Practice – an opportunity for students to determine how well they understood.
Plato’s Allegory of the Cave Philosophy Philos – love, like, seeking Sophia - wisdom, knowledge, truth.
Effective questioning techniques. Ann Nelson. What is the purpose of questioning? To check on prior knowledge To focus thinking on key concepts and issues.
1 The Discipline of Noticing and It’s use in researching, teaching and learning John Mason Sheffield Jan 2016 The Open University Maths Dept University.
Levels Questions (Levels of Questioning). Levels of Questioning (Levels Questions) We constantly question the information we receive in our daily lives.
Food for Thought Think for 30 seconds before answering… What is learning? What defines an effective classroom? How do students become proficient in mathematics?
Have you ever experienced a moment in your life when you just ran out of words and you go..... s i l e n t ???
Some Reminders: NVC (Non Violent Communication) Lasting Solutions – Peaceful resolutions Lets become aware!
1 Reasoning in the Mathematics Curriculum Anne Watson & John Mason Prince’s Trust Maths CPD London Mar 2 Manchester Mar The Open University Maths.
1 Reasoning Reasonably in Mathematics John Mason Schools Network Warwick June 2012 The Open University Maths Dept University of Oxford Dept of Education.
1 Promoting Mathematical Reasoning John Mason AIMSSEC MTh19 Jan 2013 The Open University Maths Dept University of Oxford Dept of Education Promoting Mathematical.
1 Reasoning Masterfully Mathematically (mostly without arithmetic) John Mason Affinity Leicestershire Feb 2016 The Open University Maths Dept University.
The secret of the ‘meaning of life’…. …is no secret at all.
1 Teaching for Mastery: Variation Theory Anne Watson and John Mason NCETM Standard Holders’ Conference March The Open University Maths Dept University.
How do Historians Create Accounts of Past Events?.
Autism. Supporting Behaviour That Challenges:. 1.Understanding our part in behaviour change We all have behaviour that challenges at times What one person.
1 Reaching for Mastery: Achievement for All John Mason Meeting the Challenge of Change in Mathematics Education Kent & Medway Maths Hub Maidstone, Kent.
Doing, Learning & Teaching Mathematics: developing the inner explorer
Developing Research Techniques Using Disciplined Noticing
Mathematical (& Pedagogical) Literacy
Developing the Inner Explorer in Spatial Reasoning
Variation not simply Variety
Researching from the Inside: confessions of a lifelong phenomenologist
Working Mathematically with Students Part C
Teaching for Mastery: variation theory
Presentation transcript:

1 Noticing John Mason Stockholm May 2013 The Open University Maths Dept University of Oxford Dept of Education Promoting Mathematical Thinking

2 It is only after you come to know the surface of things that you venture to see what is underneath; But the surface of things is inexhaustible (Italo Calvino) He who loves practice without theory is like the sailor who boards ship without a rudder and compass and never knows where he may cast. Practice always rests on good theory. (Leonardo Da Vinci)

3 Say What You See

4

5

6

7

8 Compare the areas covered by the three colours Max Bill (artist)

9 Gasket Sequences

10 Say What You See ( x – b )( x – c )( x – d ) ( a – b )( a – c )( a – d ) A ( x – c )( x – d )( x – a ) ( b – c )( b – d )( b – a ) B + + ( x – d )( x – a )( x – b ) ( c – d )( c – a )( c – b ) C ( x – a )( x – b )( x – c ) ( d – a )( d – b )( d – c ) D + y = (a, A) (b, B) (c, C) (d, D)

11 Pebble Arithmetic

12 Observations About Observations  A name or label immediately shapes what is seen and what is recalled Frederick Bartlett 1932  Observation is theory laden George Hanson 1958  We want our theories to be as fact laden as our facts are theory laden Nelson Goodman 1978

13 13 “They couldn’t …” “They can’t” “They didn’t display evidence of …” “They don’t display evidence of …” Accounting ForAccount of Reporting Data “I didn’t detect evidence of …” “I don’t detect evidence of …”

14 14 Conjectures The more precisely the data is specified and the more precise the analysis … … the more we learn about the researcher ’ s sensitivities to notice and access to discourse to describe Events consist of the stories told

15 Protases  I cannot change others; I can work at changing myself  To express is to over stress  One thing we do not seem to learn from experience … … is that we do not often learn from experience alone

16 16 Natural Epistemology  Noticing – Marking – Recording  Conjecturing  Resonance seeking …with own experience …with others  Validity found in …use by local community of practice …own future practices informed Avoid the teaching of speculators, whose judgements are not confirmed by experience. (Leonardo Da Vinci)

17 17 Recognising Choices Distinguishing Choices Accumulating Alternatives Identifying & labelling Validating with Others Describing Moments Refining Exercises Systematic Reflection Keeping Accounts Seeking Threads Preparing & Noticing Imagining Possibilities Noticing Possibilities

18 18 Specting Interspective Extraspective Intraspective I n t r o s p e c ti v e

19 19 Essence of Discipline of Noticing  Systematic Reflection …Past (accounts-of not accounting-for)  Preparing & Noticing …For Future & Present  Recognising Choices …Could-have & Could-be (not should have or should be)  Validating …for Self & with Others

20 20 Interwoven Worlds Own world of experience Trying Reflecting Seeking resonance with others Colleague's world of experience World of observations & theories Recognising Possibilities Expressing Preparing

21 21 The universe is a mirror in which we can contemplate only what we have learned to know about ourselves (Italo Calvino)

22 22 Adam can get irritable and moody at times, so I secretly replaced his caffeinated coffee with decaff Let’s see if he notices I guess technically to notice something you have to be awake

23 Follow Up Mason, J. (2002). Researching Your own Practice: The Discipline of Noticing, London: RoutledgeFalmer. Selected Articles Mason, J. (2011). Noticing: roots and branches. In M. Sherin & R. Philips. Mathematics Teacher Noticing: Seeing Through Teachers’ Eyes. p Mahwah: Erlbaum.