Advanced Wireless Sensor Network Bakii S Juma ID.:1232036005

Slides:



Advertisements
Similar presentations
Geographic Routing Without Location Information AP, Sylvia, Ion, Scott and Christos.
Advertisements

Dynamic Location Discovery in Ad-Hoc Networks
You are here Three Beacon Sensor Network Localization through Self Propagation Mohit Choudhary Under Guidance of: Dr. Bhaskaran Raman.
Computer Science Dr. Peng NingCSC 774 Adv. Net. Security1 CSC 774 Advanced Network Security Topic 7.3 Secure and Resilient Location Discovery in Wireless.
Computer Networks Group Universität Paderborn Ad hoc and Sensor Networks Chapter 9: Localization & positioning Holger Karl.
Range-Free Sensor Localization Simulations with ROCRSSI-based Algorithm Matt Magpayo
Source-Location Privacy Protection in Wireless Sensor Network Presented by: Yufei Xu Xin Wu Da Teng.
Convex Position Estimation in Wireless Sensor Networks
MANETs Routing Dr. Raad S. Al-Qassas Department of Computer Science PSUT
A Novel Cluster-based Routing Protocol with Extending Lifetime for Wireless Sensor Networks Slides by Alex Papadimitriou.
1/14 Ad Hoc Networking, Eli M. Gafni and Dimitri P. Bertsekas Distributed Algorithm for Generating Loop-free Routes in Networks With Frequently.
1 University of Freiburg Computer Networks and Telematics Prof. Christian Schindelhauer Wireless Sensor Networks 16th Lecture Christian Schindelhauer.
GPS-free Positioning in Ad-Hoc Networks Yu-Min Tseng.
Range-free Localization Schemes for Large Scale Sensor Networks
Novel Self-Configurable Positioning Technique for Multihop Wireless Networks Authors : Hongyi Wu Chong Wang Nian-Feng Tzeng IEEE/ACM TRANSACTIONS ON NETWORKING,
Dynamic Localization Control for Mobile Sensor Networks S. Tilak, V. Kolar, N. Abu-Ghazaleh, K. Kang (Computer Science Department, SUNY Binghamton)
TPS: A Time-Based Positioning Scheme for outdoor Wireless Sensor Networks Authors: Xiuzhen Cheng, Andrew Thaeler, Guoliang Xue, Dechang Chen From IEEE.
Adaptive Self-Configuring Sensor Network Topologies ns-2 simulation & performance analysis Zhenghua Fu Ben Greenstein Petros Zerfos.
Probability Grid: A Location Estimation Scheme for Wireless Sensor Networks Presented by cychen Date : 3/7 In Secon (Sensor and Ad Hoc Communications and.
A Cross Layer Approach for Power Heterogeneous Ad hoc Networks Vasudev Shah and Srikanth Krishnamurthy ICDCS 2005.
Scalable and Distributed GPS free Positioning for Sensor Networks Rajagopal Iyengar and Biplab Sikdar Department of ECSE, Rensselaer Polytechnic Institute.
Beacon Vector Routing: Scalable Point-to-Point Routing in Wireless Sensornets.
Power saving technique for multi-hop ad hoc wireless networks.
Geographic Routing Without Location Information A. Rao, C. Papadimitriou, S. Shenker, and I. Stoica In Proceedings of the 9th Annual international Conference.
CS401 presentation1 Effective Replica Allocation in Ad Hoc Networks for Improving Data Accessibility Takahiro Hara Presented by Mingsheng Peng (Proc. IEEE.
Presented by: Chaitanya K. Sambhara Paper by: Maarten Ditzel, Caspar Lageweg, Johan Janssen, Arne Theil TNO Defence, Security and Safety, The Hague, The.
Time of arrival(TOA) Prepared By Sushmita Pal Roll No Dept.-CSE,4 th year.
Sensor Positioning in Wireless Ad-hoc Sensor Networks Using Multidimensional Scaling Xiang Ji and Hongyuan Zha Dept. of Computer Science and Engineering,
LOCALIZATION in Sensor Networking Hamid Karimi. Wireless sensor networks Wireless sensor node  power supply  sensors  embedded processor  wireless.
Dynamic Clustering for Acoustic Target Tracking in Wireless Sensor Network Wei-Peng Chen, Jennifer C. Hou, Lui Sha.
Introduction to Sensor Networks Rabie A. Ramadan, PhD Cairo University 3.
Stochastic sleep scheduling (SSS) for large scale wireless sensor networks Yaxiong Zhao Jie Wu Computer and Information Sciences Temple University.
Architectures and Applications for Wireless Sensor Networks ( ) Localization Chaiporn Jaikaeo Department of Computer Engineering.
Dynamic Fine-Grained Localization in Ad-Hoc Networks of Sensors Weikuan Yu Dept. of Computer and Info. Sci. The Ohio State University.
Multi-hop-based Monte Carlo Localization for Mobile Sensor Networks
Location Estimation in Ad-Hoc Networks with Directional Antennas N. Malhotra M. Krasniewski C. Yang S. Bagchi W. Chappell 5th IEEE International Conference.
ENERGY-EFFICIENT FORWARDING STRATEGIES FOR GEOGRAPHIC ROUTING in LOSSY WIRELESS SENSOR NETWORKS Presented by Prasad D. Karnik.
September 16,2003 MobiCom'03 University of Virginia 1 Range-Free Localization Schemes in Large Scale Sensor Networks Tian He Chengdu Huang Brian.
A new Ad Hoc Positioning System 컴퓨터 공학과 오영준.
A Distributed Relay-Assignment Algorithm for Cooperative Communications in Wireless Networks ICC 2006 Ahmed K. Sadek, Zhu Han, and K. J. Ray Liu Department.
Probabilistic Coverage in Wireless Sensor Networks Authors : Nadeem Ahmed, Salil S. Kanhere, Sanjay Jha Presenter : Hyeon, Seung-Il.
A Passive Approach to Sensor Network Localization Rahul Biswas and Sebastian Thrun International Conference on Intelligent Robots and Systems 2004 Presented.
Differential Ad Hoc Positioning Systems Presented By: Ramesh Tumati Feb 18, 2004.
Ad Hoc Positioning System (APS) Using AOA Dragos¸ Niculescu and Badri Nath INFOCOM ’03 1 Seoyeon Kang September 23, 2008.
Ad Hoc Positioning System (APS)
11/25/2015 Wireless Sensor Networks COE 499 Localization Tarek Sheltami KFUPM CCSE COE 1.
Localization and Secure Localization. Learning Objectives Understand why WSNs need localization protocols Understand localization protocols in WSNs Understand.
Positioning in Ad-Hoc Networks - A Problem Statement Jan Beutel Computer Engineering and Networks Lab Swiss Federal Institute of Technology (ETH) Zurich.
University “Ss. Cyril and Methodus” SKOPJE Cluster-based MDS Algorithm for Nodes Localization in Wireless Sensor Networks Ass. Biljana Stojkoska.
Performance of Adaptive Beam Nulling in Multihop Ad Hoc Networks Under Jamming Suman Bhunia, Vahid Behzadan, Paulo Alexandre Regis, Shamik Sengupta.
Webdust PI: Badri Nath SensIT PI Meeting January 15,16, Co-PIs: Tomasz Imielinski,
Cooperative Location- Sensing for Wireless Networks Authors : Haris Fretzagias Maria Papadopouli Presented by cychen IEEE International Conference on Pervasive.
1 Presented by Jing Sun Computer Science and Engineering Department University of Conneticut.
6.4 Global Positioning of Nodes Advanced Operating Systems Ruizhe Ma September 28, 2015.
Energy-Efficient Randomized Switching for Maximizing Lifetime in Tree- Based Wireless Sensor Networks Sk Kajal Arefin Imon, Adnan Khan, Mario Di Francesco,
On Mobile Sink Node for Target Tracking in Wireless Sensor Networks Thanh Hai Trinh and Hee Yong Youn Pervasive Computing and Communications Workshops(PerComW'07)
How to minimize energy consumption of Sensors in WSN Dileep Kumar HMCL 30 th Jan, 2015.
Mingze Zhang, Mun Choon Chan and A. L. Ananda School of Computing
Author:Zarei.M.;Faez.K. ;Nya.J.M.
Localization for Anisotropic Sensor Networks
Under Guidance- Internal Guide- Ms. Shruti T.V
Dynamic Fine-Grained Localization in Ad-Hoc Networks of Sensors
Introduction to Wireless Sensor Networks
Net 435: Wireless sensor network (WSN)
Presented by Prashant Duhoon
任課教授:陳朝鈞 教授 學生:王志嘉、馬敏修
Wireless Mesh Networks
Wireless Sensor Networks and Internet of Things
A schematic overview of localization in wireless sensor networks
Overview: Chapter 2 Localization and Tracking
Presentation transcript:

Advanced Wireless Sensor Network Bakii S Juma ID.:

Outline Abstract I.Introduction II.AOA Theory A.AOA capable nodes B.Triangular Using AOA III.Ad hoc Positioning System (APS) Algorithm A.Orientation Forwarding B.Network Density IV.Error Control V.Simulation VI.Node Mobility VII.Future Work and Conclusions

Abstract Position information of individual nodes is useful in implementing functions such as routing and querying in ad-hoc networks. Deriving position information by using the capability of the nodes to measure time of arrival (TOA), time difference of arrival (TDOA), angle of arrival (AOA) and signal strength. The nodes in an ad-hoc network can have multiple capabilities and exploiting one or more of the capabilities can improve the quality of positioning. In this paper: show how AOA capability of the nodes can be used to derive position information.

I.Introduction[1/3] The main challenges of new ad hoc networks: – Large number of unattended nodes with varying capability – lack or impracticality of deploying supporting infrastructure. – High cost of human supervised maintenance. Solution: – class of algorithms which are scalable, tunable, distributed, and easy to deploy.

I.Introduction [2/3] Most of time the nodes depends on gpS to find its position in network. What happen if power failure occur, or GPS service is not accessible ? Aim: To enable nodes themselves to find their position without adding any extra infrastructures or capabilities.

I.Introduction [3/3] Previous positioning methods used: – TDOA like in Cricket[2] and AhLOS[3]. – Signal strength (RADAR[4], APS[5]). What makes our approach different ? – It depends more on AOA capability for nodes to know their position in the network. ad hoc positioning is also possible by using various localization capabilities (ranging, AOA, compasses), independently, or together.

II. AOA Theory [1/3] Each node in their network is assumed to have one main axis against which all angles are reported and the capacity to estimate with a given precision the direction from which a neighbor is sending data. Some of the nodes, from here on called landmarks, have additional knowledge about their position from some external source, such as a GPS receiver or human input. The term bearing refers to an angle measurement with respect to another object. In their case, the AOA capability provides for each node bearings to neighboring nodes with respect to a node’s own axis. A radial is a reverse bearing, or the angle under which an object is seen from another point.

II.AOA Theory [2/3]

II. AOA Theory [3/3]

A. AOA capable nodes [1/3] AOA capability usually depends on antenna, which prohibited in size and power consumption. A small node developed at MIT. theory of operation is based on both time difference of arrival (TDoA) and phase difference of arrival. If a node sends a RF signal and an ultrasound signal at the same time, the destination node might infer the range to the originating node based on the time difference in arrivals.

A. AOA capable nodes [2/3] In order to get the angle of arrival, each node may use two ultrasound receivers placed at a known distance from each other, L By knowing ranges x 1, x 2, and distance L, the node is able to infer the orientation, with a accuracy of 5 ◦ when the angle lies between ±40 ◦.

A.AOA capable nodes [3/3]

B.triangular using AOA [1/6] In figure 3, if beside coordinates of A, B and C, node D knows distances DA, DB and DC, it can use trilateration to infer its position. On the other hand, if it knows the angles BDA, ADC, and CDB it can find its position using triangulation. This is done by finding the intersection of the three circles determined by the landmarks and the known angles.

B. Triangular using AOA [2/6]

B.Triangular using AOA [3/6] This linear system can be solved using standard methods for over-determined systems, such as the pseudo-inverse. If for example a node D knows the angle to a pair of landmarks A and B, it may infer that its position is somewhere on the circle determined by the angle and the position of the two landmarks (figure 4).

B.Triangular using AOA [4/6]

B.Triangular using AOA [5/6]

B.Triangular using AOA [6/6] Another method of positioning using angles is VOR (VHS Omni-directional Range). Its principle is very simple: a landmark sends two signals, one that is periodic and omni-directional, while the another one is directional and is rotated about the landmark.

III. Ad hoc Position System (APS) Algorithm The problem in an ad hoc network is that a node can only communicate with its immediate neighbors, which may not always be landmarks APS is a hybrid between two major concepts: – Distance vector (DV). – Routing and beacon based positioning (GPS).

III.Ad hoc Position System (APS) Algorithm Similar to DV – routing is the fact that information is forwarded in a hop by hop fashion, independently with respect to each landmark. Similar to GPS – Each node estimates its own position, based on the landmark readings it gets. The original APS concept has been shown to work using range measurements, but is in fact extensible to angle measurements.

III. Ad hoc Position System (APS) Algorithm Proposed method enables to form orientation so that nodes which are not in direct contact with the landmarks can still infer their orientation with respect to the landmark. They are going to analyze two algorithms: – DV-Bearing, which allows each node to get a bearing to a landmark. – DV-Radial, which allows a node to get a bearing and a radial to a landmark.

A.Orientation Forwarding

Orientation Forwarding Node A might accept another bearing to L from another pair of neighbors, if it involves less hops than the pair B−C. A then continues the process by forwarding its estimated bearing to L to its neighbors which will help farther away nodes get their estimates for L. Forwarding orientations is done in a fashion similar to distance vector routing algorithms.

Orientation Forwarding If the radial method is to be used, a similar argument holds, with the difference that now A needs to know, besides bearings of B and C to L, the radials of B and C from L.

Network Density The question that arises in deployment of the network is what kind of node density is needed in order to achieve a certain condition with high probability. They expect the degree requirement to be higher in our case, since more than simple connectivity is needed for the orientation propagation to work. In figure 6, we can see that when the mean degree of a node increases beyond 9, with a very high probability it will meet the conditions to forward orientation.

Network Density Variation of the average degree is achieved by increasing the radio range of the nodes. It is often envisioned that the deployed density is higher than needed to allow for extension in battery life by tuning the duty cycle.

IV.Error Control All bearing measurements are affected by errors, the forwarding may actually amplify and compound smaller errors into larger errors. A number of simple techniques may be employed to reduce the propagation of such errors, including: – Avoiding inference based on small angles or on degenerate triangles – Limiting the propagation of DV packets with a simple TTL scheme. – Elimination of the outliers in position estimation.

Error Control In proposed algorithm should works in the environment : – Low power, low communication capacity node, error control methods employed have to be lightweight. Together, the three mentioned methods achieve an error reduction of about half. The first intuitive remark is that error cumulates with distance, because of the way bearings are propagated.

Error Control Limiting the propagation of the DV packets using a TTL scheme is a good idea not only for error control reasons, but also for reducing communication complexity. the TTL is the main Feature that makes the proposed algorithm scalable. The next key observation is that small angles are more error prone than large angles. – It is preferable to deal with equilateral triangles than with triangles that have two very acute angles and one obtuse angle. The reason for that is that AOA measurement errors are theoretically independent of the actual angle measured. There is a tradeoff between coverage and positioning error, and this results from the orientation forwarding policy.

Error Control A conservative policy would use a high threshold, limiting the computations with small angles but also limiting the propagation of orientations, and finally reducing coverage. A relaxed policy would propagate almost all angles, involving more errors, but would improve coverage. In figure 8, it is shown how varying from a very conservative forwarding policy (threshold=0.5 ≈ 28◦) to a very relaxed one (threshold=0.01≈ 0.5◦) achieves different levels of coverage (success rate) with different amounts of error. Another error control method, suggested in [11], refers to the position estimations obtained from the triplets of landmarks.

Error Control The method suggested in [11] is to first compute the centroid and then remove the outliers before re computing a new centroid with the remaining points (fig 9). There are more powerful methods available, such as data clustering and k-smallest enclosing circle, but they involve higher computational and memory complexities, which may not be applicable to small networked nodes, such as sensor nodes.

Error Control

V.Simulation They simulated an isotropic1 map similar with the one in figure 10 (average degree=10.5, diameter=32), but with 1000 nodes, each having a random, but unknown heading. Gaussian noise is added to each AOA estimation to simulate measurement errors. All the results presented in this section are averaged from 100 runs with different randomly distributed landmark configurations over the same network. Due to the fact that the proposed algorithms provide different tradeoffs, in order to produce comparable coverage we ran DV- Bearing with a TTL of 5 and DV-Radial with a TTL of 4.

V.Simulation All performance graphs indicate the standard deviation in selected points.

V.Simulation

Bearing Error – is the average error of the bearing to landmarks obtained by regular nodes after the orientation propagation phase stops. – This is a primary measure of how the forwarding method compounds and propagates error. – Because each landmark is treated independently, bearing errors are not affected by the number of landmarks available in the network. – As expected, DVRadial exhibits lower error, mainly because of the extra value that is forwarded.

V.Simulation Heading Error – Heading is the angle between nodes axis and the north, as would be given by a compass. – Heading error is therefore the error in the absolute orientation averaged over all nodes. – In Their simulation, it is obtained by each node after estimating a position. – Heading error (figure 13) is about double the bearing error, which is consistent with the results presented in [11].

V.Simulation Coverage Error – Coverage represents the percentage of non landmark nodes which are able to resolve for a position. – The reasons for which a node doesn’t get a position are: fewer than three landmarks accumulated (due to propagation errors), collinear or co-circular landmarks, or numerical instability in the system solving. – They aimed for similar coverage for the two algorithms in order to compare the other performance metrics. – Even if positioning is theoretically possible with two landmarks for DV- Radial and with three landmarks for DV-Bearing, in practice, due to angle errors compounding, a much higher number of landmarks might be needed.

V.Simulation

Main Observations – accuracy can be traded off for coverage by tuning the TTL and the threshold value. – The TTL tradeoff is also between energy and coverage, as its reduction would lead to less energy spending but also to less coverage

VI.Node Mobility The proposed scheme works on static topologies while highly mobile topologies, usually associated with ad hoc network. The target of this proposed scheme, to deal with ad hoc topologies that do not change often. – E.g sensor N.W. indoor outdoor temporary infrastructure APS aims to keep a low signaling complexity in the event network topology changes slightly. Subsequent mobility of the network is supported as long as a sufficient fraction of nodes remains fixed at any one time to serve updates for the mobile nodes

VII.Future work and Conclusions The project will be in the direction of improving the positioning quality by using error estimation and multimodal sensing. Method proposed infers position and orientation in an ad hoc network where nodes can measure angle of arrival (AOA) from communication with their immediate neighbors. Assumption is that all nodes have AOA capability and only a fraction have self positioning capability

VII.Future work and Conclusions Two algorithms were proposed DV Bearing and DV-Radial, each providing different signaling accuracy-coverage-capabilities tradeoffs. Simulations showed that resulted positions have an accuracy comparable to the radio range between nodes, and resulted orientations are usable for navigational or tracking purposes.

End !!!! Thank U!!