Experiments with Frozen-Spin Target and Polarized Photon Beams.

Slides:



Advertisements
Similar presentations
Polarisation Observables for Strangeness Photoproduction on a Frozen Spin Target with CLAS at Jefferson Lab Stuart Fegan Nuclear Physics Group University.
Advertisements

G measurement at Ken Livingston, University of Glasgow, Scotland Slides from: Ken Livingston: Various talks at -
Measuring the Proton Spin Polarizabilities in Real Compton Scattering Philippe Martel – UMass Amherst Advisor: Rory Miskimen TUNL (Triangle Universities.
1 Single  0 Electroproduction in the Resonance Region with CLAS Kyungseon Joo University of Connecticut For the CLAS Collaboration N* 2009 Beijing, China.
Measurement of the  n(p)  K +   (p) at Jefferson Lab Sergio Anefalos Pereira Laboratori Nazionali di Frascati.
C x and C x for K + Λ and K +  o Photo-production R. Bradford Department of Physics and Astronomy, University of Rochester R. Schumacher Department of.
Experimental requirements for GPD measurements at JLab energies. Detector that ensures exclusivity of process, measurement of complete final state Measure.
1 Exclusive electroproduction of the    on the proton at CLAS  Outline: Physics motivations: GPDs CLAS experiment: e1-dvcs Data analysis:   cross.
 *(1520) CrossSection Zhiwen Zhao Physics 745. Λ BARYONS (S = − 1, I = 0) Λ 0 = u d s Λ(1520) D 03 I( J P ) = 0( 3/2 − ) Mass m = ± 1.0 MeV [a]
Study of two pion channel from photoproduction on the deuteron Lewis Graham Proposal Phys 745 Class May 6, 2009.
Measurement of B (D + →μ + ν μ ) and the Pseudoscalar Decay Constant f D at CLEO István Dankó Rensselaer Polytechnic Institute representing the CLEO Collaboration.
Eugene Pasyuk Jefferson Lab for the CLAS Collaboration Moscow, September 20-23, 2012 XIII International Seminar on Electromagnetic Interactions of Nuclei.
10 July 2007 Collaboration Meeting 1 Photon physics at JLab: Status and prospects ?? Daniel Sober The Catholic University of America.
Big Electron Telescope Array (BETA) Experimental Setup Expected Results Potential Physics from SANE Electron scattering provides a powerful tool for studying.
Transversal Target Asymmetries in Threshold
Polarisation transfer in hyperon photoproduction near threshold Tom Jude D I Glazier, D P Watts The University of Edinburgh.
T.C. Jude D.I. Glazier, D.P. Watts The University of Edinburgh Strangeness Photoproduction At Threshold Energies.
Crystal Ball Experiment at MAMI Recent Results W.J. Briscoe for the A2 Collaboration (thanks for the sabbatical support) MESONS 2010 SFB443.
Status of the recoil nucleon polarimeter Dan Watts, Derek Glazier, Mark Sikora (SUPA PhD student) (University of Edinburgh, UK)
M. Dugger, Jlab User Meeting, June First data with FROST First data with FROST Michael Dugger* Arizona State University *Work at ASU is supported.
Recoil Polarimetry in Meson Photoproduction at MAMI Mark Sikora, Derek Glazier, Dan Watts School of Physics, University of Edinburgh, UK Introduction The.
Eugene Pasyuk DSPIN-09 Dubna, September 1-5, Eugene Pasyuk DSPIN-09 Dubna, September 1-5,
1 Consequences for Future Multichannel Analyses of Electromagnetic Scattering Data if a Hadronic Beam Facility is not Built D. Mark Manley Kent State University.
Scintillation hodoscope with SiPM readout for the CLAS detector S. Stepanyan (JLAB) IEEE conference, Dresden, October 21, 2008.
Motivation. Why study ground state hyperon electroproduction? CLAS detector and analysis. Analysis results. Current status and future work. M. Gabrielyan.
Hadron physics Hadron physics Challenges and Achievements Mikhail Bashkanov University of Edinburgh UK Nuclear Physics Summer School I.
Probe resolution (GeV) N π,  Q 2 =12 GeV 2 Q 2 =6 GeV 2 The study of nucleon resonance transitions provides a testing ground for our understanding.
Baryon Spectroscopy: Recent Results and Impact – , Erice R. Beck HISKP, University of Bonn Introduction Impact of the new Polarization.
Jefferson Lab and the 12GeV Upgrade Nuclear Physics UK Community Meeting Cosener’s House 11 th & 12 th June 2009 Ken Livingston, University of Glasgow.
Dynamical coupled-channels analysis of meson production reactions at Hiroyuki Kamano (Excited Baryon Analysis Center, Jefferson Lab) in collaboration.
The FROST Experiment Franz Klein for the g9 (FROST) run group CLAS Collaboration Meeting/CLAS12 Workshop Paris 2011.
Sub-Nucleon Physics Programme Current Status & Outlook for Hadron Physics D G Ireland.
Recent progress in N* physics from Kaon photoproduction experiments at CLAS using polarization observabes. The Rutherford Centennial Conference on Nuclear.
Baryon spectroscopy at CLAS and CLAS12 Baryons’10, Dec 2010, Osaka, Japan Ken Livingston, University of Glasgow, Scotland For the CLAS collaboration Hadron.
The In-medium Widths of the  and  Mesons in Nuclei 17 Sep and the CLAS Collaboration M. H. Wood (Canisius College, Buffalo, NY, USA) M. Paolone,
Measurement of high lying nucleon resonances and search for missing state in double charged pion electroproduction off proton E.Golovach for the CLAS collaboration.
Photoproduction and Decays of Pseudoscalar Mesons in CLAS
1 G9a -FROST. 2 Experiments FROST New generation of CLAS photoproduction experiments with FROzen Spin Polarized Target (FROST) E02-112: γp→KY (K + Λ,
Dynamical coupled-channels study of meson production reactions from Hiroyuki Kamano (Excited Baryon Analysis Center, Jefferson Lab) MENU2010,
Photo-production of strange mesons with polarized photons and targets Eugene Pasyuk Jefferson Lab XIV International Seminar on Electromagnetic Interactions.
Dihadron production at JLab Sergio Anefalos Pereira (INFN - Frascati)
Baryon spectroscopy: recent Kaon photoproduction results from CLAS EINN2009, Sep2009, Milos Island, Greece Ken Livingston, University of Glasgow Motivation.
Kaon Production on the Nucleon D. G. Ireland MENU Rome, September 30 – October 4, 2013.
N* analysis at the Excited Baryon Analysis Center of JLab Hiroyuki Kamano (EBAC, Jefferson Lab) CLAS12 2 nd European Workshop, March 7-11, Paris, France.
N* analysis at the Excited Baryon Analysis Center of JLab Hiroyuki Kamano (EBAC, Jefferson Lab) CLAS12 2 nd European Workshop, March 7-11, Paris, France.
Strangeness Photoproduction in FROST Liam Casey Hugs 2008.
B. G. Ritchie - MENU October *Work at ASU is supported by the U.S. National Science Foundation Barry G. Ritchie* Arizona State University.
Meson Photoproduction with Polarized Targets   production a)  0 at threshold b) Roper and P 11 (1710)   production a) S 11 -D 13 phase rotation.
Status of Beam Asymmetry Measurements for Meson Photoproduction ASU Meson Physics Group Hadron Spectroscopy WG Meeting – June 2009 Status of Beam Asymmetry.
HLAB meeting paper 2011/1/18 T.Gogami CLAS ( CEBAF Large Acceptance Spectrometer ) Clam shell is open.
Polarisation transfer in hyperon photoproduction near threshold Tom Jude D I Glazier, D P Watts The University of Edinburgh.
Spin dependence in exclusive ρ o production at COMPASS Andrzej Sandacz Sołtan Institute for Nuclear Studies, Warsaw On behalf of the Collaboration  ρ.
Georgie Mbianda 1 for the Baryon (E01-002) Collaboration 1 University of the Witwatersrand, Johannesburg Exclusive Electroproduction of π + and η mesons.
The Spin Physics Program at Jefferson Lab Sebastian Kuhn Old Dominion University e e PtPt PePe.
Deeply virtual  0 electroproduction measured with CLAS.
Complete pseudoscalar photo-production measurements F.J. Klein (CUA) NSTAR 2011, Newport News, VA, May 16-20, 2011.
Overview of recent photon beam runs at CLAS CLAS12 European Workshop, Feb , Genoa, Italy Ken Livingston, University of Glasgow Tagged photons.
Elton S. Smith 1 JLab: Probing Hadronic Physics with Electrons and Photons Elton S. Smith Jefferson Lab V Latinamerican Symposium on Nuclear Physics Santos,
1.More than 98% of dress quark masses as well as dynamical structure are generated non-perturbatively through DCSB (higgs mech.
CLAS Collaboration at Jefferson Lab Deuteron Spin Structure function g 1 at low Q 2 from EG4 Experiment Krishna P. Adhikari, Sebastian E. Kuhn Old Dominion.
Polarisation Observables for Strangeness Photoproduction on a Frozen Spin Target with CLAS at Jefferson Lab Stuart Fegan Nuclear Physics Group University.
Timelike Compton Scattering at JLab
Polarisation Observables from Strangeness Photoproduction on a Frozen Spin Target with CLAS at Jefferson Lab Stuart Fegan Nuclear Physics Group Seminar.
p0 life time analysis: general method, updates and preliminary result
Precision Measurement of η Radiative Decay Width via Primakoff Effect
New Results on 0 Production at HERMES
Current Status of EBAC Project
Michael Dugger* Arizona State University
Proposal for an Experiment: Photoproduction of Neutral Kaons on Deuterium Spokespersons: D. M. Manley (Kent State University) W. J. Briscoe (The George.
Hiroyuki Kamano (Excited Baryon Analysis Center, Jefferson Lab)
Presentation transcript:

Experiments with Frozen-Spin Target and Polarized Photon Beams

CEBAF Large Acceptance Spectrometer Torus magnet 6 superconducting coils Gas Cherenkov counters e/  separation, 256 PMTs Time-of-flight counters plastic scintillators, 684 photomultipliers Drift chambers argon/CO 2 gas, 35,000 cells polarized target + polarized target + start counter start counter Electromagnetic calorimeters Lead/scintillator, 1296 photomultipliers DAQ linit ~ 6kHz (~1.5TB/day)

polarized photon beams circularly pol. beam (long. pol. electrons) linearly pol. beam (coherent bremsstrahlung) → CLASg8 poster tagged flux ~ 50MHz (for k>0.5 E 0 ) ~10MHz (coh.peak)

CLAS polarized targets existing dynamically pol. NH 3 target: P~80%, P~35% (deuterized) pol. magnet: 5.1 T (Helmholtz coils) reduces 4π acceptance to θ<65 o

CLAS frozen-spin target target: Ø15mm x 50mm butanol C 4 H 9 OH dilution factor 10/74 eff. density: g/cm 3 operate at ~50mK, repolarize at 0.4K

CLAS frozen-spin target longitudinal polarization: solenoidal coil (0.5T; ΔB/B~0.2%) → online NMR transverse polarization: “racetrack” coil (0.3+T; ΔB/B~0.5%) NEW DEVELOPMENT! size: Ø5cmx11cm size: Ø5cmx20cm max. Pol.~96%, average ~80-85% (τ relax ~30d)

Proposed Experiments E02-112: γp→KY (K + Λ, K + Σ 0, K 0 Σ + ) E03-105/E01-104: γp→π 0 p, π + n E05-012: γp→ηp in preparation: γp→π + π - p, γp→ωp reactions off neutrons/deuterons ??

- resonance parameters - search for missing resonances goal of exp. program

determine mass, width, coupling of all resonances up to ~2.0 GeV FROST

Experiment and Theory Experiment cross section, spin observables Theory LQCD, quark models, QCD sum rules, … Reaction Theory dynamical frameworks Amplitude analysis →multipole ampl., →phase shifts σ,dσ/dΩ (single) Σ y,P,T Σ p, T 20, T 21,T 22 (beam-target) E, F, G, H, (beam-recoil) C x,C z, O x,O z, (target-recoil) L x,L z, T x,T z, (beam/target-VM) C BV, C TV, C BTV PWA: SES CC: res. param. extraction

beam – target polarization 4 (12) complex amplitudes for 0 - (1 - ) meson production ≥ 8 (≥ 68) measurements FROST: all 4 combinations of beam (lin,circ) and target (long,trans) for Λ, Σ 0,+ additionally recoil polar. complete set all observables as fcts of √s and cosθ use algebraic relations to check for systematics from CLAS g1, g8, g11 data

beam – target polarization Extraction of spin observables via Fourier analysis of polarized cross section in each (E,cosθ) bin α=orientation of photon polarization β=orientation of target polarization P T =linear photon polarization P o =circular photon polarization P z =longitudinal target polarization P xy =transverse target polarization FROST: 6 polar. observ. for π 0 p,π + n,ηp statistics ±3-5% (<8% for η) systematics ±3-5% (beam, target, E, Σ, eff. dilution fac.) ±6-8% P, F, G, H

data extraction estimated from He/H CLAS data and MC FROST: additional carbon target, averaged yields dilution factor: (D but =10/74=0.135) yields for free/bound nucleons: D eff ~ γp→K + Λ γp→πN γp→ηp

gp→ηp TAPSGRAALCLASCB-ELSATAPSGRAALCLASCB-ELSA GRAAL  Bonn T GRAAL  Bonn T only 15% pol. data NO double pol.data

γp→ηp (dσ/dΩ) solid line: REM (etaMAID) - includes: D13(1520), S11(1535), D15(1675), F15(1680), D13(1700), P11(1710), P13(1720), t-exchange ( ρ,ω) dashed line: χQM (Saghai) - additionally: P11(1440), S11(~1730), P13(1900), F15(2000),

γp→ηp (SAID solution) small changes in fit to dσ/dΩ cause large fluctuation of multipoles → fit not well constrained by data → need polarization observables → fit not well constrained by data → need polarization observables

γp→π 0 p, π + n said database: hardly any double-pol. obs. FROST: wide coverage: E γ ~ GeV,θ cm ~ o fine binning: ΔE<25MeV, Δθ cm ~10-15 o > 5000 data points single pol. ~2-3x double pol. ~7-8x

γp→π 0 p, π + n most cases: only 1 st excited state in PW well known after FROST experiment we expect: red: sample PWA (MC data)

γp→π 0 p, π + n (sample PWA) sample PWA using MC data generated from SM02 greatly reduced uncertainties

γp→π 0 p, π + n impact on single energy solutions

γp→KY (K + Λ, K + Σ 0, K 0 Σ + ) present data insufficient to perform single energy fits

γp→KY (K + Λ, K + Σ 0, K 0 Σ + )

FROST: all 16 polar. observ. for K + Λ, K + Σ 0, K 0 Σ + statistics ±5-10% (<15% for Σ + ) systematics ±3-5% (beam, target, P, Σ, dilution fac.) ±6-8% E, F, G, H, C x,z, O x,z, L x,z, T x,z

γp→ωp dσ/dΩ compared to model (Y.Oh, H.S. Lee) purple: t-channel (Pomeron, π, η) and u-channel (N-pole) green: s-channel black: sum

γp→ωp

● 1 st run period in fall 2006 (long.pol.) ● cryostat being tested in test lab ● all polarization observables measurable in CLAS will be extracted from data ● complete set of measurements for KY ● “almost” complete set for πN, ηp ● double/triple pol. obs. for π + π - p, ωp least model dependent extraction of N* parameters & potential for discovery of missing states outlook