Flight results from the Merlin space weather monitor on Giove-A 3 rd European Space Weather Week 13-17 November 2006, Brussels K A Ryden, P A Morris, D.

Slides:



Advertisements
Similar presentations
G.Santin, P Nieminen, H Evans, E Daly
Advertisements

BELGISCH INSTITUUT VOOR RUIMTE-AERONOMIE INSTITUT D’AERONOMIE SPATIALE DE BELGIQUE BELGIAN INSTITUTE FOR SPACE AERONOMY BELGISCH INSTITUUT VOOR RUIMTE-AERONOMIE.
New results of radiation environment investigation by Liulin-5 experiment in the human phantom aboard the International Space Station.
DOSE SPECTRA FROM ENERGETIC PARTICLES AND NEUTRONS (DoSEN) S. Smith 1, N. A. Schwadron 1 C. Bancroft 1, P. Bloser 1, J. Legere 1, J. Ryan 1, H. E. Spence.
Radiation Environment in a Human Phantom aboard the International Space Station during the Minimum of 23-rd Solar Cycle Semkova J. 1, Koleva R. 1, Maltchev.
GIOVE-A 3 rd Euro Space Weather Meeting, Nov 2006 ©SSTL/University of Surrey GIOVE-A Radiation Environment Study Regime and Instrument Description.
Space Weather Effects on Satellite Communications Tim Deaver Vice President, Hosted Payload Development June 21, 2011.
Results from the GIOVE-A CEDEX Space Radiation Monitor B Taylor 1, C Underwood 1, H Evans 2, E Daly 2, G Mandorlo 2, R Prieto 2, M Falcone 2 1. Surrey.
1 The QinetiQ Atmospheric Radiation Model and Solar Particle Events Clive Dyer, Fan Lei, Alex Hands, Peter Truscott Space Division QinetiQ, Farnborough,
Radiation Belt variations during current solar maximum
Danish Space Research Institute Danish Small Satellite Programme FH Space_Environment.ppt Slide # 1 Flemming Hansen MScEE, PhD Technology Manager.
Space radiation dosimetry and the fluorescent nuclear track detector Nakahiro Yasuda National Institute of Radiological Sciences.
ESA UNCLASSIFIED – For Official Use Space Weather in Medium Earth Orbit H.D.R. Evans, K. Ryden, P. Nieminen, E. Daly, P. Buehler, W. Hajdas, A. Zadeh ESWW7,
From Geo- to Heliophysical Year: Results of CORONAS-F Space Mission International Conference «50 Years of International Geophysical Year and Electronic.
Geant4 Context from the point of view of The Space Environments and Effects Analysis Section E.J. Daly.
Direction - Conférence 1. Latest developments in MEO radiation belt Models D.Lazaro, A.Sicard-Piet, S.Bourdarie ONERA/DESP, Toulouse, France Session 2:
GLAST Simulations Theodore E. Hierath Louisiana State University August 20, 2001.
Liulin-F charged particle telescope for radiation environment investigation aboard Phobos-Grunt interplanetary spacecraft SES 2010, Sofia, 2-4 November,
Shu Zhang (on behalf of the HXMT team) Institute of High Energy Physics, Chinese Academy of Science The current status of HXMT and its calibrations.
experimental platform
30 Ge & Si Crystals Arranged in verticals stacks of 6 called “towers” Shielding composed of lead, poly, and a muon veto not described. 7.6 cm diameter.
Electromagnetics & Space Environment Division – TEC-EES Electromagnetics & Space Environment Division – TEC-EES Observations of the GALILEO radiation environment.
Radiation conditions during the GAMMA-400 observations:
1 Introduction The TOP-modelPotential applicationsConclusion The Transient Observations-based Particle Model and its potential application in radiation.
GRAS Validation and GEANT4 Electromagnetic Physics Parameters R. Lindberg, G. Santin; Space Environment and Effects Section, ESTEC.
I n t e g r a t e d D e s i g n C e n t e r / M I s s I o n D e s I g n L a b o r a t o r y N A S A G O D D A R D S P A C E F L I G H T C E N T E R Do.
Energetic particle environment as seen by SphinX P. Podgorski 1, O. V. Dudnik 2, S. Gburek 1, M. Kowalinski 1, J. Sylwester 1, M. Siarkowski 1, S. Plocieniak.
System for Radiation Environment characterization (fluxes, doses, dose equivalents at Earth, Moon and Mars) on hourly thru yearly time frame Example: Snapshots.
Paul Sellin, Radiation Imaging Group Time-Resolved Ion Beam Induced Charge Imaging at the Surrey Microbeam P.J. Sellin 1, A. Simon 2, A. Lohstroh 1, D.
1 Space Environment Measurements by JAXA Satellites and ISS Takahiro OBARA Space Environment Group Japan Aerospace Exploration Agency (JAXA)
The PLANETOCOSMICS Geant4 application L. Desorgher Physikalisches Institut, University of Bern.
ORBITALS Phase A Extended Interim Meeting U of A Phase A2 Work Update ORBITALS Science Team, University of Alberta CSA HQ, St. Hubert, 2010/03/17.
G.K. Garipov 1, B.A. Khrenov 1, P.A. Klimov 1, V.S. Morozenko 1, M.I. Panasyuk 1, V.I. Tulupov 1, V.M. Shahparonov 1, S.A. Sharakin 1, S.I. Svertilov 1,
M. Kim and F. Cucinotta Example Solar Proton Event Data NASA JSC August 30, 2006.
Solar Cycle Electron Radiation Environment at GNSS Like Orbit A. Sicard-Piet (1), S. Bourdarie (1), D. Boscher (1 ), R. Friedel (2), T. Cayton (2), E.
Is the Terrestrial Magnetosphere a Natural Radiation Shield on Moon Space Missions ? R. Koleva, B. Tomov, T. Dachev, Yu. Matviichuk, Pl. Dimitrov, Space.
Operation of the Space Environmental viewing and Analysis Network (Sevan) in 24-th Solar Activity Cycle A. Chilingarian A. Chilingarian Yerevan Physics.
Page 1 HEND science after 9 years in space. page 2 HEND/2001 Mars Odyssey HEND ( High Energy Neutron Detector ) was developed in Space Research Institute.
Exploitation of Space Ionizing Radiation Monitoring System in Russian Federal Space Agency STRUCTURE OF THE MONITORING SYSTEM The Monitoring System includes.
ESA’s GSTB Programme GSTB-V1 is a ground system to test Galileo’s key algorithms using GPS data GSTB-V2 consists of a pair of satellites: –GSTB-V2/A (SSTL)
© Copyright QinetiQ limited 2006 A New Model of Outer Belt Electrons for Dielectric Internal Charging (MOBE-DIC) Alex Hands 1, Keith Ryden 1, Craig Underwood.
LA ACES Neutron Detector (NeD)
GEOSHAFT Pilot Space Weather Service David Rodgers, Karen Ford and Keith Ryden, QinetiQ, Farnborough, UK SW Week 2005: ESTEC, Noordwijk.
Radiation Storms in the Near Space Environment Mikhail Panasyuk, Skobeltsyn Institute of Nuclear Physics of Lomonosov Moscow State University.
Russian Aviation and Space Agency Institute for Space Research NASA 2001 Mars Odyssey page 1 Workshop HEND Radiation environment on Odyssey and.
2 Jun 2022 Jan 2030 Sep 2032 Jun months 1 month 9 months 11 months 9 months Launch Ariane-5 Jupiter orbit insertion Transfer to Callisto Europa.
Preliminary Presentation By Matthew Lewis 2 nd December 2005.
CRaTER TIM April 2005 Proj. Sci. Justin Kasper (MIT) Galactic Cosmic Rays and Solar Flares Justin Kasper (MIT) CRaTER Project Scientist LRO/CRaTER TIM.
© Copyright QinetiQ limited 2006 Exploitation of GIOVE in-Orbit Radiation Data for Environment Model and Effects Tools Update ESA Contract Number:
16 November 2009European Space Weather Week Galileo and Space Weather E.J. Daly, D.J. Rodgers, H.D.R. Evans, P.Nieminen and V. Alpe ESA-ESTEC, The.
The highly miniaturised radiation monitor Edward Mitchell * On behalf of the HMRM collaboration (STFC Rutherford Appleton Laboratory & Imperial College.
DAMPE: now in orbit G. Ambrosi – DAMPE coll.. DAMPE: now in orbit G. Ambrosi – DAMPE coll.
Spacecast Richard B Horne, S. A. Glauert, N. P. Meredith, D. Boscher, V. Maget, A. Sicard, D. Heynderickx and D. Pitchford Forecasting the High Energy.
Gyeongbok Jo 1, Jongdae Sohn 2, KyeongWook Min 2, Yu Yi 1, Suk-bin Kang 2 1 Chungnam National University 2 Korea Advanced Institute of Science.
Unmanned Space Probes.
A joint study of the University of Göttingen (1) and Astrium (2)
The Transition Radiation Detector for the PAMELA Experiment
Forecasting the Perfect Storm
Project Structure Advanced Neutron Spectrometer on the International Space Station (ANS-ISS) Mark Christl NASA/MSFC Oct 23, 2015 Honolulu, HI 1 1.
ARTEMIS – solar wind/ shocks
1 - Paul Scherrer Institut, 2 – SpaceIT, 3 - European Space Agency
R. Bucˇık , K. Kudela and S. N. Kuznetsov
SPACE RADIATION DOSIMETRY
Charged Particle Monitor onboard the ASTROSAT
N. P. Meredith1, R. B. Horne1, J. D. Isles1, K. A. Ryden2,
CRaTER Science Requirements
Overview of the Low Energy Telescope and its Performance in-orbit
HE instrument and in-orbit performance
Experience of on-board radiation control on Medium-Earth Orbit
Presentation transcript:

Flight results from the Merlin space weather monitor on Giove-A 3 rd European Space Weather Week November 2006, Brussels K A Ryden, P A Morris, D J Rodgers, C S Dyer - QinetiQ C I Underwood, B. Taylor, S Jason - SSTL/ University of Surrey H D Evans, E J Daly, G Mandorlo, G Gatti - ESA/ESTEC

Giove-A Test-bed for European Galileo GNSS –obtain frequency filing protection –characterise the MEO environment –validate certain critical payloads –provide representative signal-in-space transmission Built and operated by SSTL Successfully launched in December 2005 Orbit 23,260 km and 56 degrees inclination, 27 month lifetime –electron dominated: charging and total dose hazards –exposed to solar particle events SSTL image

Galileo orbit Severe trapped electron environment –Charging effects –Total ionising dose Galactic cosmic rays Solar protons and ions

Total ionising dose

Internal charging ESD transients can cause anomalies and outages Cables, connectors, pcbs etc High energy electrons from space environment Dielectric Shielding

Merlin space weather hazard monitor Electrons and charging Total ionising dose Protons Ions (LET) 1kg, 2.5W (standard) Developed from the earlier CREDO and SURF science detectors

QinetiQ space radiation monitors CREAM Cosmic Ray Effects and Activation Monitor (1986 onward) Charge deposition events in Si Flights: Shuttle(10 flights) /BA Concorde/Qantas/ CREDO Cosmic Ray Effects and Dosimetry Experiment (1991 onward) Ion LET spectra and proton flux Flights: UoSAT, STRV1a, Skynet, APEX, MIR, MPTB SURF (2000 onward) Surface charging and internal charging (electron flux) Flights: STRV1d Merlin (2005 onward) Charging/LET spectra/proton flux/TiD Flights: Giove-A, LWS/SET

Merlin space weather hazard monitor Electrons & electrostatic charging (3 shielding depths) Ions (linear energy transfer) Protons (>40 MeV flux) Total dose RADFET (x2) Integral rad-hard computer, data storage, power conditioning and communications

Merlin block diagram Sensor suite ( CREDO + SURF + Radfet) Data handling

Merlin-Giove-A

Electrons & charging: SURF experiment Novel approach –internal charging current vs depth measurement –each plate has unique energy response curve so spectrum can be obtained Virtually immune to proton contamination Built and flown on STRV1d 300g, 0.3W Space radiation particles Satellite telemetry system Lid 0.6mm Al 0.5mm Al plate 1.0mm Al plate Satellite exterior wal l Satellite ground reference fA.

SURF experiment: internal charging mode

SURF results GTO orbit 500 x 36,000 km

Merlin-Giove-A Located externally (under thermal blanket) Extra box shielding incorporated (5mm thick walls) due to severity of orbit SURF and Radfet set-up for Giove-A: SURF plates Housing (lid) RADFETS 0.4 mm Al 2 mm Al 5 mm Al 0.5 mm Al 1 mm Al Thermal blanket mm Al eq.

Merlin pre-flight calibration REEF Sr-90 source

Realistic Electron Environment Facility 90 Sr  source: 3.7 G Bq Vacuum chamber -10 to +40°C temperature control of thermal plate Electron current controlled by variation of source-to -sample distance ESD detection system Surface potential measurements (‘TREK’ probes)

Electron spectrum comparisons REEF capability brackets the average (AE8) and worst-case (FLUMIC) electron environments predicted for GEO

Merlin pre-flight calibration in REEF

Two particle telescopes (CREDO) – ion LET spectrum – protons (400 keV energy deposition threshold) Pulse height discriminator COINCIDENCE GATE SIGNAL Si diode, area 3cm 2, 300um thick NON-COINCIDENCE COUNTERS COINCIDENCE COUNTERS Merlin-Giove-A

Radiation monitors installed on Giove-A Picture: SSTL

Launch 28 th December 2005

1 st day of data: electrons/charging

Jan & Feb 2006: electrons/charging

Jan & Feb 2006: electrons & dose

21 Feb 2006 electron event

6 days later

Jan-May 2006: electrons & dose

April 06 electron event

Single belt transit – 17 th April 2006

Jan-Aug 2006: electrons and dose

AE8/sectored shielding model of the expected dose.

Sept & Oct 2006: electrons and dose

Jan-Oct 2006: electrons and dose (Daily average)

Jan-Aug 2006: electrons and FLUMIC seasonal modulation function

Jan-Oct 2006: top SURF plate compared to DICTAT worst case

Jan-Oct 2006: middle SURF plate compared to DICTAT worst case

Jan-Oct 2006: bottom SURF plate compared to DICTAT worst case

Jan-Aug 2006: electron spectrum ‘hardness’

6th July 2006 – minor SPE

Background LET spectrum

Conclusions Good data from all Merlin sensors –Electrons/charging rates measured at three shielding depths –Total dose at two shielding depths –> 40 MeV protons (500 keV deposition threshold to be sure of protons) –LET spectrum (background) Numerous electron enhancement events have been observed via the charging (electron deposition) and total dose effects Clear 27 day interval in electron enhancements (persistent coronal holes) April ‘event’ was the most severe so far –‘worst case’ events are of engineering significance and their magnitude needs to be captured –April event still produced less than DICTAT ‘worst case’ predicted charging currents for the plates

…..conclusions Ionising dose is delivered in surges during the electron events From Jan to August 2006, approximately half of the dose was delivered by just one electron event Dose at 6mm shield depth (Merlin +z direction) observed is greater than the predicted value (using AE8/sectored shielding models) at this stage: however may not be typical of whole solar cycle Post-script –2 nd Merlin for NASA ‘Living with a Star’ now built & qualified