X5 TEST BEAM preliminary studies Outline  Voltage scan  PLL scan + Neighbour Strips  Sensor Uniformity  Comments  Special Trigger (Friday)

Slides:



Advertisements
Similar presentations
INFN Milano, Universita` degli Studi Milano Bicocca Siena IPRD May Testbeam results of the CMS electromagnetic calorimeter Alessio Ghezzi.
Advertisements

CSC Test Beam Data Analysis Alexander Khodinov and Valeri Tcherniatine.
Kondo GNANVO Florida Institute of Technology, Melbourne FL.
Data analysis BTF 23 e 24 mag 05 T1 T2 500MeV electrons Repetition Rate 50 Hz Pulse Duration 1-10 ns Current/pulse 1 to 8 particles σ XY ~2mm Max Electronic.
Collection Of Plots for A Testbeam Paper. List of Possible Plots R/Phi resolution, charge sharing, noise etc. Noise performance and few Landau distributions.
Preshower 15/03/2005 P.Kokkas Preshower September Run Data Analysis P. Kokkas.
Study of Photon Sensors using the Laser System 05/7/12 Niigata University, Japan Sayaka Iba, Editha P. Jacosalem, Hiroaki Ono, Noriko.
FNAL TB09 Plots Alessandra Borgia Syracuse Unviersity Marina Artuso, Jianchun Wang, Ray Mountain January 20, 2010.
Update on Analysis of FNAL TB09 Jianchun Wang for the group Syracuse Univesity Jan 29 th,2010.
1 Scintillating Fibre Cosmic Ray Test Results Malcolm Ellis Imperial College London Monday 29 th March 2004.
29 June 2004Paul Dauncey1 ECAL Readout Tests Paul Dauncey For the CALICE-UK electronics group A. Baird, D. Bowerman, P. Dauncey, C. Fry, R. Halsall, M.
CMS Physics Meeting, Dec. 6, Analysis Note on the Validation of the ORCA Simulation of the Endcap Muon CSC Front-end Electronics S. Durkin -- Ohio.
Juan Valls 1 TOB System Test Status Report  DS ROD System Test Setup  DAQ Software  DS ROD Characterization PLL, FED Timing Scans OPTO Scans  Noise.
Status on Testbeam Analysis Jianchun Wang Syracuse University VELO meeting, August 28, 2007.
Test Pulse Analysis Carl Goodrich 7/31/07. Test Pulse The Test Pulse was injected into channels 4 and 23 –We expect channels 3, 4, 5, and 22, 23, 24 to.
Andrea Giammanco CMS Tracker Week April DS ROD Prototype: “final” optohybrids “final” CCUM integrated in the rod with new FEC_to_CCUM adapter (Guido.
October, 2004CMS Tracker Week1 APV settings at cold temperatures Objective: provide recommendations for APV I2C settings for cold operation, for test beam.
MuTr HV Optimization RIKEN/RBRC Itaru Nakagawa 1.
System Test Status Report R. D’Alessandro 1 TIB System Test Report Where were we ….., Mechanics (layer 3 prototype) Mother Cable & Interconnect Board System.
APV25 for SuperBelle SVD M.Friedl HEPHY Vienna. 2Markus Friedl (HEPHY Vienna)11 Dec 2008 APV25 Developed for CMS by IC London and RAL (70k chips installed)
Updates on GEMs characterization with APV electronics K. Gnanvo, N. Liyanage, K. Saenboonruang.
ECFA Sep 2004Paul Dauncey - CALICE Readout1 CALICE ECAL Readout Status Paul Dauncey For the CALICE-UK electronics group A. Baird, D. Bowerman, P.
Operation of the CMS Tracker at the Large Hadron Collider
Simonetta Gentile, LCWS10, March 2010, Beijing,China. G-APD Photon detection efficiency Simonetta Gentile 1 F.Meddi 1 E.Kuznetsova 2 [1]Università.
Update on SBS Back Tracker UVa K. Gnanvo, N. Liyanage, V Nelyubin, K. Saenboonruang, Seth Saher, Nikolai Pillip (visiting from Univ. Tel Aviv, Israel)
Performance of a Large-Area GEM Detector Prototype for the Upgrade of the CMS Muon Endcap System Vallary Bhopatkar M. Hohlmann, M. Phipps, J. Twigger,
Vertex 2005, Nikko Manfred Pernicka, HEPHY Vienna 1.
The GEM activities at Tsinghua University Zhigang Xiao 1, Yan Huang 1, Rensheng Wang 1, Haiyan Gao 1,2 1 Department of Physics, Tsinghua University 2 Dept.
Studying the efficiency and the space resolution of resistive strips MicroMegas Marco Villa – CERN MAMMA meeting Tuesday, 13 th December 2011 CERN, Geneva.
Status of photon sensor study at Niigata University -- SiPM and MPPC -- Photon sensor mini workshop 05/9/16 University Niigata University.
12 October 2001, M. LefebvreHEC-Athena Tutorial: HEC beam test primer1 HEC Beam Test Primer Production modules of the HEC have been tested in particle.
Calibration of the gain and measurement of the noise for the apv25 electronics K. Gnanvo, N. Liyanage, C.Gu, K. Saenboonruang From INFN Italy: E. Cisbani,
Jyly 8, 2009, 3rd open meeting of Belle II collaboration, KEK1 Charles University Prague Zdeněk Doležal for the DEPFET beam test group 3rd Open Meeting.
Anatoli Romaniouk TRT Test manual Some important information p. 2-3Some important information p. 2-3 Noise studies p.4-7Noise studies p.4-7 Operation with.
DESY BT analysis - MPPC Saturation Correction - S. Uozumi Feb Sci-ECAL meeting 1.MPPC Gain Measurement (with LED data) 2.Inter-calibration of readout.
FNAL Beam test results A. Zhang, V. Bhopatkar, M. Phipps, J. Twigger, M. Hohlmann HEP Group A, Florida Tech 2013/11/18.
Quality control for large volume production GEM detectors Christopher Armaingaud On behalf of the collaboration GEMs for CMS.
Time and amplitude calibration of the Baikal-GVD neutrino telescope Vladimir Aynutdinov, Bair Shaybonov for Baikal collaboration S Vladimir Aynutdinov,
GE1/1-III GEM Cluster Size and Resolution Studies with the FNAL Beam Test Data Aiwu Zhang, Vallary Bhopatkar, Marcus Hohlmann Florida Institute of Technology.
Some feedbacks from DRS data analysis (very preliminary) F. Scuri - I.N.F.N Sezione di Pisa RD52 – Collaboration Meeting – Pavia, March 12, 2013 F. Scuri.
Construction and beam test analysis of GE1/1 prototype III gaseous electron multiplier (GEM) detector V. BHOPATKAR, E. HANSEN, M. HOHLMANN, M. PHIPPS,
RHIC CNI Polarimeter status RHIC CNI Group February 26, 2008.
The CMS Silicon Strip Tracker Carlo Civinini INFN-Firenze On behalf of the CMS Tracker Collaboration Sixth International "Hiroshima" Symposium on the Development.
FEE card validation M. Raggi, T. Spadaro. The problem Validate FEE production – threshold determination at < 1mV accuracy – comparator time effects: Overdrive.
Development of a pad interpolation algorithm using charge-sharing.
RD51 GEM Telescope: results from June 2010 test beam and work in progress Matteo Alfonsi on behalf of CERN GDD group and Siena/PISA INFN group.
FNAL beam test data analysis A Hands-on session at CMS Upgrade School Aiwu Zhang Florida Institute of Technology On behalf of the CMS GEM collaboration.
Juan Valls - LECC03 Amsterdam 1 Recent System Test Results from the CMS TOB Detector  Introduction  ROD System Test Setup  ROD Electrical and Optical.
SRS Calibration Part II: Dynamic Range, Signal/Noise, Pulse Shape and Timing Jitter + initial results from scan of FIT zigzag board Michael Phipps, Bob.
Laser Measurements (as comparison to test beam data) Florian Lütticke University of Bonn 9 th VXD Belle 2 Workshop Valencia,
3/06/06 CALOR 06Alexandre Zabi - Imperial College1 CMS ECAL Performance: Test Beam Results Alexandre Zabi on behalf of the CMS ECAL Group CMS ECAL.
TCT measurements with strip detectors Igor Mandić 1, Vladimir Cindro 1, Andrej Gorišek 1, Gregor Kramberger 1, Marko Milovanović 1, Marko Mikuž 1,2, Marko.
1 Methods of PSD energy calibration. 2 Dependence of energy resolution on many factors Constant term is essential only for energy measurement of single.
PreShower Characterisations
INFN and University of Florence Test Beam Meeting Tracker Week
Beam test of Silicon-Tungsten Calorimeter Prototype
EZDC spectra reconstruction and calibration
Marcin Chrząszcz Cracow University of Technology Itamar Levy
INFN and University of Florence Test Beam Meeting Tracker Week
L. Ratti, M. Manghisoni Università degli Studi di Pavia INFN Pavia
Roberto Chierici - CERN
X5 quasi offline Analysis
PCAL Cosmic Ray Tests Progress Report C. Smith μ U V W MODULE 2
Pulse Shape Fitting Beam Test September, October CERN
TIB module performance at X5 Test beam – preliminary studies
5% The CMS all silicon tracker simulation
Instrumentation for Colliding Beam Physics 2017
Results of HyCal Analyses
TIB contribution for the X5 - May 2003 Test Beam
May Test Beam Analysis – Sensor Homogeneity – Preliminary!
Presentation transcript:

X5 TEST BEAM preliminary studies Outline  Voltage scan  PLL scan + Neighbour Strips  Sensor Uniformity  Comments  Special Trigger (Friday)

D. Giordano - Università & INFN di Bari2 Opto-Hybrid Normalization Run Signal and Noise for each APV are Normalized to a same value of OH gain normalization with Tick Mark difference (Dig1 – Dig0) S and N values normalized to Tick Mark Difference = 230 Riccardo talk of July 2003 TIBTOB

D. Giordano - Università & INFN di Bari3 Norm.Factor Vs RunNb TIB2 APV 3 TOB1 APV2

D. Giordano - Università & INFN di Bari4 HV scan for TIB modules Peak mode:  beam runs: 1198,99,1204,07,08,09,11,13,14,15 Dec. Mode:  25 ns runs: 30024,27,30,33,36,39,42,46 Studies: I Vs HV S/N, Normalized Noise, Cluster Width Vs HV Runs with Hysteresis effect are excluded NEW: Vscan for TIB/TOB Dec mode:  beam,  25 ns,  beam runs: 30133,37,40,42,45,47,51,54,62,63,64  74, 75

D. Giordano - Università & INFN di Bari5 I Vs HV Peak ModeDec. Mode

D. Giordano - Università & INFN di Bari6 S/N Vs HV ~25.5 ~18 Peak ModeDec. Mode

D. Giordano - Università & INFN di Bari7 Norm.Noise Vs HV Peak ModeDec. Mode ~1.06 ~1.38 N Dec /N Peak ~ 1.3

D. Giordano - Università & INFN di Bari8 Cluster Width Vs HV Peak ModeDec. Mode ~1.15

D. Giordano - Università & INFN di Bari9 New Vscan in Dec Mode TOB TIB Acquisition from 12h to 20h

D. Giordano - Università & INFN di Bari10 S/N Vs HV Low stat Wrong Fit ~25 ~18

D. Giordano - Università & INFN di Bari11 Norm.Noise Vs HV

D. Giordano - Università & INFN di Bari12 Cluster Width Vs HV

D. Giordano - Università & INFN di Bari13 PLL scan for TIB modules Peak mode:I SHA HV = 300 V runs: 1154, 2290, 1225, 1300 (  beam,  beam) Dec. Mode: HV I SHA =40, V FS =60 runs: 30029,32,35,38,41,45 (  25 ns) Studies: Fit of Signal Shape Normalized Signal, Rise Time Vs I SHA or HV Delay curves per strips

D. Giordano - Università & INFN di Bari14 Peak mode: Signal Shape Run 1154 Signal (ADC counts) Norm.Signal (ADC counts) PLL Delay (ns) CR-RC fit of Signal Shape

D. Giordano - Università & INFN di Bari15 Peak Mode: Scan in I SHA Norm.Signal (ADC counts) V FS = 60 Norm.Signal (ADC counts)

D. Giordano - Università & INFN di Bari16 Dec mode: Signal Shape Run  = t 9/10 – t 1/10 Signal (ADC counts) Norm.Signal (ADC counts) PLL Delay (ns) Gaussian fit of Signal Shape  = t 9/10 – t 1/10

D. Giordano - Università & INFN di Bari17 Dec mode: Noise Vs PLL Delay Run 30032

D. Giordano - Università & INFN di Bari18 Dec mode: Scan in HV Norm.Signal (ADC counts) Module TIB 2 I SHA = 40,V FS = 60

D. Giordano - Università & INFN di Bari19 Peak mode: Eta & PLL Delay (ns) Eta Width = 1 Width = 2 Run TIB2 Width > 2 |Eta -0.5| < 0.3 Peak Time

D. Giordano - Università & INFN di Bari20 Dec mode: Run TIB2

D. Giordano - Università & INFN di Bari21 Delay Curves Q Seed Q -1 Q +1 DEF: Q C = Q Clus Q S = Q Seed Q u = max( Q -1, Q +1 ) Q L = min( Q -1, Q +1 ) Q C, Q S, Q U, Q L Vs PLL Studies: |Eta -0.5|< <|Eta -0.5| Estimate Norm.Signal, PeakTime, tau for each Delay curve Scan in I SHA or HV

D. Giordano - Università & INFN di Bari22 Peak mode: Delay curves Run TIB2 0.3 < |Eta – 0.5| QCQC QSQS QLQL QUQU

D. Giordano - Università & INFN di Bari23 Peak mode: Delay curves Run TIB2 |Eta – 0.5| < 0.3 QCQC QSQS QLQL QUQU

D. Giordano - Università & INFN di Bari24 Peak Mode: Scan in I SHA of Qc Norm.Signal (ADC counts) V FS = 60 Tau (ns) 0.3 < |Eta – 0.5||Eta – 0.5| < 0.3 TIB2 QCQC QCQC

D. Giordano - Università & INFN di Bari25 Peak Mode: Scan in I SHA of  Tp DEF:  Tp = Peak Time of Qi – Peak Time of Qc V FS = 60 |Eta – 0.5| < 0.3 TIB2 0.3 < |Eta – 0.5|  Tp QSQS QLQL QUQU QSQS QLQL QUQU

D. Giordano - Università & INFN di Bari26 Dec mode: Delay curves Run TIB2 0.3 < |Eta – 0.5| QCQC QSQS QLQL QUQU I SHA = 40,V FS = 60

D. Giordano - Università & INFN di Bari27 Dec mode: Delay curves Run TIB2 |Eta – 0.5| < 0.3 QCQC QSQS QLQL QUQU I SHA = 40,V FS = 60

D. Giordano - Università & INFN di Bari28 High Statistic Runs for TIB Peak mode: runs:  beam 1351,52,53  25 ns1484 Dec. Mode: runs:  beam1332 Studies: S/N Noise Width Vs Cluster Position selecting events in the range StripNb ± 0.5

D. Giordano - Università & INFN di Bari29 Dec. Mode: Beam Profile 256 ÷ ÷ 120 Dead Strips: 69, 70 TIB 2 Run 1332 TIB 5

D. Giordano - Università & INFN di Bari30 Dec. Mode: S/N Vs Cluster Position S/N = 17.6S/N = 17.4 TIB 2TIB 5 Dead Strips

D. Giordano - Università & INFN di Bari31 Dec. Mode: Width Vs Clus. Position Mean 1.72 TIB 2 TIB 5 Mean 1.78 Dead Strips

D. Giordano - Università & INFN di Bari32 Dec. Mode: Noise Vs Clus. Position TIB 2TIB 5 Dead Strips

D. Giordano - Università & INFN di Bari33 Peak Mode: S/N & Noise Vs Clus.Pos TIB 2 Run 1351 TIB 5 Dead Strips

D. Giordano - Università & INFN di Bari34 Peak Mode: Width Vs Clus. Position Mean 1.58 Mean 1.43

D. Giordano - Università & INFN di Bari35 PLL scan: Pattern Run Run  25 ns On time

D. Giordano - Università & INFN di Bari36 Comment on Eta Common Block ALLCLUST in ntuple 1001 (file _tt6.hbook) clusEta(totCluster) Width = 1 Width > 0 Eta = Q L /(Q R +Q L ) Clusid = 1 Q L, Q R from maxstr_charge_cl charge_np_cl charge_nm_cl