Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung Matrix – Basic Definitions Chapter 3 Systems of Differential.

Slides:



Advertisements
Similar presentations
Common Variable Types in Elasticity
Advertisements

3D Geometry for Computer Graphics
Chapter 6 Eigenvalues and Eigenvectors
Refresher: Vector and Matrix Algebra Mike Kirkpatrick Department of Chemical Engineering FAMU-FSU College of Engineering.
Mathematics. Matrices and Determinants-1 Session.
8 CHAPTER Linear Algebra: Matrix Eigenvalue Problems Chapter 8 p1.
Linear Transformations
Computer Graphics Recitation 5.
Ch 7.3: Systems of Linear Equations, Linear Independence, Eigenvalues
Chapter 3 Determinants and Matrices
Chapter 2 Matrices Definition of a matrix.
1 Neural Nets Applications Vectors and Matrices. 2/27 Outline 1. Definition of Vectors 2. Operations on Vectors 3. Linear Dependence of Vectors 4. Definition.
Chapter 1 Vector analysis
6 1 Linear Transformations. 6 2 Hopfield Network Questions.
MOHAMMAD IMRAN DEPARTMENT OF APPLIED SCIENCES JAHANGIRABAD EDUCATIONAL GROUP OF INSTITUTES.
Boot Camp in Linear Algebra Joel Barajas Karla L Caballero University of California Silicon Valley Center October 8th, 2008.
資訊科學數學11 : Linear Equation and Matrices
化工應用數學 授課教師: 郭修伯 Lecture 9 Matrices
Arithmetic Operations on Matrices. 1. Definition of Matrix 2. Column, Row and Square Matrix 3. Addition and Subtraction of Matrices 4. Multiplying Row.
Stats & Linear Models.
5.1 Orthogonality.
1 Statistical Analysis Professor Lynne Stokes Department of Statistical Science Lecture 5QF Introduction to Vector and Matrix Operations Needed for the.
Boyce/DiPrima 9th ed, Ch 7.3: Systems of Linear Equations, Linear Independence, Eigenvalues Elementary Differential Equations and Boundary Value Problems,
Compiled By Raj G. Tiwari
Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 7.1 Solving Systems of Two Equations.
Linear Algebra Review 1 CS479/679 Pattern Recognition Dr. George Bebis.
1 February 24 Matrices 3.2 Matrices; Row reduction Standard form of a set of linear equations: Chapter 3 Linear Algebra Matrix of coefficients: Augmented.
8.1 Vector spaces A set of vector is said to form a linear vector space V Chapter 8 Matrices and vector spaces.
Chap. 2 Matrices 2.1 Operations with Matrices
Digital Image Processing, 3rd ed. © 1992–2008 R. C. Gonzalez & R. E. Woods Gonzalez & Woods Matrices and Vectors Objective.
Statistics and Linear Algebra (the real thing). Vector A vector is a rectangular arrangement of number in several rows and one column. A vector is denoted.
Matrices. A matrix, A, is a rectangular collection of numbers. A matrix with “m” rows and “n” columns is said to have order m x n. Each entry, or element,
Matrices CHAPTER 8.1 ~ 8.8. Ch _2 Contents  8.1 Matrix Algebra 8.1 Matrix Algebra  8.2 Systems of Linear Algebra Equations 8.2 Systems of Linear.
Sheng-Fang Huang. 4.0 Basics of Matrices and Vectors Most of our linear systems will consist of two ODEs in two unknown functions y 1 (t), y 2 (t),
Linear algebra: matrix Eigen-value Problems Eng. Hassan S. Migdadi Part 1.
Chapter 3 Determinants Linear Algebra. Ch03_2 3.1 Introduction to Determinants Definition The determinant of a 2  2 matrix A is denoted |A| and is given.
Chapter 6 Systems of Linear Equations and Matrices Sections 6.3 – 6.5.
Introduction to Linear Algebra Mark Goldman Emily Mackevicius.
Chapter 2 … part1 Matrices Linear Algebra S 1. Ch2_2 2.1 Addition, Scalar Multiplication, and Multiplication of Matrices Definition A matrix is a rectangular.
The Mathematics for Chemists (I) (Fall Term, 2004) (Fall Term, 2005) (Fall Term, 2006) Department of Chemistry National Sun Yat-sen University 化學數學(一)
Review of Matrix Operations Vector: a sequence of elements (the order is important) e.g., x = (2, 1) denotes a vector length = sqrt(2*2+1*1) orientation.
Matrices and Determinants
MATRICES Operations with Matrices Properties of Matrix Operations
Linear Algebra Chapter 2 Matrices.
Matrices and Matrix Operations. Matrices An m×n matrix A is a rectangular array of mn real numbers arranged in m horizontal rows and n vertical columns.
MATRIX A set of numbers arranged in rows and columns enclosed in round or square brackets is called a matrix. The order of a matrix gives the number of.
STROUD Worked examples and exercises are in the text Programme 5: Matrices MATRICES PROGRAMME 5.
LEARNING OUTCOMES At the end of this topic, student should be able to :  D efination of matrix  Identify the different types of matrices such as rectangular,
STROUD Worked examples and exercises are in the text PROGRAMME 5 MATRICES.
2 - 1 Chapter 2A Matrices 2A.1 Definition, and Operations of Matrices: 1 Sums and Scalar Products; 2 Matrix Multiplication 2A.2 Properties of Matrix Operations;
Boot Camp in Linear Algebra TIM 209 Prof. Ram Akella.
1 Objective To provide background material in support of topics in Digital Image Processing that are based on matrices and/or vectors. Review Matrices.
Matrices, Vectors, Determinants.
Matrices. Variety of engineering problems lead to the need to solve systems of linear equations matrixcolumn vectors.
Lecture 1 Linear algebra Vectors, matrices. Linear algebra Encyclopedia Britannica:“a branch of mathematics that is concerned with mathematical structures.
MATRICES A rectangular arrangement of elements is called matrix. Types of matrices: Null matrix: A matrix whose all elements are zero is called a null.
MTH108 Business Math I Lecture 20.
2. Matrix Methods
Matrices and Vector Concepts
MATRICES.
Continuum Mechanics (MTH487)
Review of Linear Algebra
7.7 Determinants. Cramer’s Rule
CS479/679 Pattern Recognition Dr. George Bebis
Matrices and vector spaces
of Matrices and Vectors
Systems of First Order Linear Equations
Chapter 3 Linear Algebra
MATRICES Operations with Matrices Properties of Matrix Operations
Presentation transcript:

Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung Matrix – Basic Definitions Chapter 3 Systems of Differential Equations

Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung Matrix – Properties Matrices A, B and C with elements a ij, b ij and c ij, respectively. 1. Equality For A and B each be m by n arrays Matrix A = Matrix B if and only if a ij = b ij for all values of i and j. 2. Addition A + B = C if and only if a ij + b ij = c ij for all values of i and j. For A, B and C each be m by n arrays 3. Commutative A + B = B + A 4. Associative (A + B) + C = A + (B + C) If B = O (the null matrix), for all A : A + O = O + A = A 5. Multiplication (by a Scalar) αA = (α A)in which the elements of αA are α a ij Chapter 3 Systems of Differential Equations

Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung Matrix Multiplication, Inner Product if and only if Matrix multiplication * In general, matrix multiplication is not commutative ! commutator bracket symbol But if A and B are each diagonal * associative * distributive The product theorem For two n × n matrices A and B Chapter 3 Systems of Differential Equations

Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung Matrix Multiplication, Inner Product Successive multiplication of row i of A with column j of B – row by column multiplication For example : [2 × 3] × [3 × 2] = [2 × 2] Chapter 3 Systems of Differential Equations

Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung Matrix Multiplication, Inner Product For example : [3 × 2] × [2 × 2] = [3 × 2] Chapter 3 Systems of Differential Equations

Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung Unit Matrix, Null Matrix The unit matrix 1 has elements δ ij, Kronecker delta, and the property that 1A = A1 = A for all A The null matrix O has all elements being zero ! Exercise 3.2.6(a) : if AB = 0, at least one of the matrices must have a zero determinant. If A is an n × n matrix with determinant  0, then it has a unique inverse A -1 so that AA -1 = A -1 A = 1. Chapter 3 Systems of Differential Equations

Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung Direct product --- The direct tensor or Kronecker product If A is an m × m matrix and B an n × n matrix The direct product C is an mn × mn matrix with elements with For instance, if A and B are both 2 × 2 matrices The direct product is associative but not commutative ! Chapter 3 Systems of Differential Equations

Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung Diagonal Matrices If a 3 × 3 square matrix A is diagonalIn any square matrix the sum of the diagonal elements is called the trace. 1. The trace is a linear operation : 2. The trace of a product of two matrices A and B is independent of the order of multiplication : (even though AB  BA) 3. The trace is invariant under cyclic permutation of the matrices in a product. Chapter 3 Systems of Differential Equations

Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung Matrix Inversion Matrix A An operator that linearly transforms the coordinate axes Matrix A -1 An operator that linearly restore the original coordinate axes The elements Where C ji is the jith cofactor of A. For example : The cofactor matrix C and Chapter 3 Systems of Differential Equations

Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung Matrix Inversion For example : |A| = (3)(-1-0)-(-1)(-2-0)+(1)(4-1) = -2 The elements of the cofactor matrix are Chapter 3 Systems of Differential Equations

Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung Special matrices A matrix is called symmetric if: A T = A A skew-symmetric (antisymmetric) matrix is one for which: A T = -A An orthogonal matrix is one whose transpose is also its inverse: A T = A -1 Any matrix symmetricantisymmetric Chapter 3 Systems of Differential Equations

Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung Inverse Matrix, A -1 The reverse of the rotation Transpose Matrix, Defining a new matrix such that holds only for orthogonal matrices ! Chapter 3 Systems of Differential Equations

Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung Eigenvectors and Eigenvalues A is a matrix, v is an eigenvector of the matrix and λ the corresponding eigenvalue. This only has none trivial solutions for det (A- λ I) = 0. This gives rise to the secular equation for the eigenvalues: Chapter 3 Systems of Differential Equations

Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung Eigenvectors and Eigenvalues Chapter 3 Systems of Differential Equations

Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung Eigenvectors and Eigenvalues Chapter 3 Systems of Differential Equations

Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung Example Eigenvalues and Eigenvectors of a real symmetric matrix The secular equation λ = -1,0,1 λ = -1.  x+y = 0, z = 0 Normalized λ = 0  x = 0, y = 0 λ = 1  -x+y = 0, z = 0 Normalized Chapter 3 Systems of Differential Equations

Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung Example Degenerate Eigenvalues The secular equation λ = -1,1,1 λ = -1.  2x = 0, y+z = 0 Normalized λ = 1  -y+z = 0 (r 1 perpendicular to r 2 ) λ = 1  Normalized (r 3 must be perpendicular to r 1 and may be made perpendicular to r 2 ) Chapter 3 Systems of Differential Equations

Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung Chapter 3 Systems of Differential Equations Conversion of an nth order differential equation to a system of n first-order differential equations Setting,,, …… ……

Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung Chapter 3 Systems of Differential Equations Example : Mass on a spring assume eigenvector

Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung Chapter 3 Systems of Differential Equations Homogeneous systems with constant coefficients in components y 1 y 2 -plane is called the phase plane Critical point : the point P at which dy 2 /dy 1 becomes undetermined is called P : (y 1,y 2 ) = (0,0)

Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung Chapter 3 Systems of Differential Equations Five Types of Critical points

Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung Chapter 3 Systems of Differential Equations Criteria for Types of Critical points P is the sum of the eigenvalues, q the product and  the discriminant.

Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung Chapter 3 Systems of Differential Equations Stability Criteria for Critical points

Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung Chapter 3 Systems of Differential Equations Example : Mass on a spring p = -c/m, q = k/m and  = (c/m) 2 -4k/m No damping c = 0 : p = 0, q > 0  a center Underdamping c 2 0,  < 0  a stable and attractive spiral point. Critical damping c 2 = 4mk : p 0,  = 0  a stable and attractive node. Overdamping c 2 > 4mk : p 0,  > 0  a stable and attractive node.

Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung Chapter 3 Systems of Differential Equations No basis of eigenvectors available. Degenerate node If matrix A has a double eigenvalue  since If matrix A has a triple eigenvalue 

Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung Chapter 3 Systems of Differential Equations No basis of eigenvectors available. Degenerate node