В.В.Сидоренко (ИПМ им. М.В.Келдыша РАН) А.В.Артемьев, А.И.Нейштадт, Л.М.Зеленый (ИКИ РАН) Квазиспутниковые орбиты: свойства и возможные применения в астродинамике.

Slides:



Advertisements
Similar presentations
Downs 4 th Grade Science Solar System Review The Planets & Other Objects in Space.
Advertisements

Asteroid Resonances [2] Kuliah AS8140 Fisika Benda Kecil Tata Surya dan AS3141 Benda Kecil dalam Tata Surya Budi Dermawan Prodi Astronomi 2006/2007.
GN/MAE155B1 Orbital Mechanics Overview 2 MAE 155B G. Nacouzi.
ARO309 - Astronautics and Spacecraft Design Winter 2014 Try Lam CalPoly Pomona Aerospace Engineering.
Solar Imaging Radio Array (SIRA) Trajectory and Formation Analysis Flight Dynamics Analysis Branch Code 595 (572) Dave Folta Bo Naasz Frank.
All of the planets in our solar system revolve around our sun. Today you will investigate the speeds at which they move around. Orbiting Our Sun.
A Limit Case of the “Ring Problem” E. Barrabés 1, J.M. Cors 2 and G.R.Hall 3 1 Universitat de Girona 2 Universitat Politècnica de Catalunya 3 Boston University.
Planet Formation Topic: Orbital dynamics and the restricted 3-body problem Lecture by: C.P. Dullemond.
Институт прикладной математики им. М.В.Келдыша РАН Keldysh Institute of Applied Mathematics, Russian Academy of Sciences.
Asteroid Resonances [1]
Asteroid Tour Trajectory D. Hyland Nov 21, Voyage Concepts We sketch potential trajectories for our deep space vessel: –Initial voyage from LEO.
Limits of Stability in Earth Co-orbital Motion of Asteroids Martin Connors, Athabasca University Christian Veillet, CFHT R. Greg Stacey, Athabasca University.
Some 3 body problems Kozai resonance 2 planets in mean motion resonance Lee, M. H
On the determination of the probability of collisons of NEAS with the planets MACE 2006 Rudolf Dvorak ADG, Institute of Astronomy University of Vienna.
Synthetic Solar System Model (S3M) MOPS Workshop Tucson, March 11th 2008 Tommy Grav.
Rome MORE meeting Feb 16-17, Strong Equivalence Principle Violation in Coplanar 3-Body Systems Neil Ashby University of Colorado Boulder, CO USA.
GN/MAE1551 Orbital Mechanics Overview 3 MAE 155 G. Nacouzi.
Dynamics I 15-nov-2006 E. Schrama If there is one thing that we understand very well about our solar system, then it is the way.
Chapter 4: The Solar System. Goals Describe the scale of the solar system Summarize differences between terrestrial and jovian planets Summarize the properties.
Dynamics II 17-nov-2006 E. Schrama
Based on the definition given by Kasting et al. (1993). The Habitable Zone.
University of Paderborn Applied Mathematics Michael Dellnitz Albert Seifried Applied Mathematics University of Paderborn Energetically efficient formation.
COMETS, KUIPER BELT AND SOLAR SYSTEM DYNAMICS Silvia Protopapa & Elias Roussos Lectures on “Origins of Solar Systems” February 13-15, 2006 Part I: Solar.
The solar system by Evan. What is it? The solar system has planets, the moon and other objects moving around the sun Earth is one of 8 planets orbiting.
AT737 Satellite Orbits and Navigation 1. AT737 Satellite Orbits and Navigation2 Newton’s Laws 1.Every body will continue in its state of rest or of uniform.
Phases of the Moon. Spin and orbital frequencies.
Predicting the Future of the Solar System: Nonlinear Dynamics, Chaos and Stability Dr. Russell Herman UNC Wilmington.
Mercury  The closest planet to the sun.  It has no moons.  It has 38% gravity.  It takes 88 days to orbit the sun.
Solar System. Sun Mercury Venus Earth Mars Jupiter.
Secular motion of artificial lunar satellites H. Varvoglis, S. Tzirti and K. Tsiganis Unit of Mechanics and Dynamics Department of Physics University of.
Kepler’s first law of planetary motion says that the paths of the planets are A. Parabolas B. Hyperbolas C. Ellipses D. Circles Ans: C.
Orbital Dynamics of Venus (and some of those other things out there) Billy Teets, PhD Candidate Dept. of Physics & Astronomy Vanderbilt University.
Environmental Science.  Scientists have been researching the sky for almost 3000 years!  Early astronomy was centered in Greece.
University of Colorado Boulder ASEN 5070: Statistical Orbit Determination I Fall 2014 Professor Brandon A. Jones Lecture 3: Basics of Orbit Propagation.
Planetary Motion It’s what really makes the world go around.
Chaotic Dynamics of Near Earth Asteroids. Chaos Sensitivity of orbital evolution to a tiny change of the initial orbit is the defining property of chaos.
Precession, nutation, pole motion and variations of LOD of the Earth and the Moon Yuri Barkin, Hideo Hanada, Misha Barkin Sternberg Astronomical Institute,
Astronomy Chapter Seventeen: The Solar System 17.1 About the Solar System 17.2 The Planets 17.3 Other Solar System Objects.
V.V.Sidorenko (Keldysh Institute of Applied Mathematics, Moscow, RUSSIA) A.V.Artemyev, A.I.Neishtadt, L.M.Zelenyi (Space Research Institute, Moscow, RUSSIA)
Space Mission Design: Interplanetary Super Highway Hyerim Kim Jan. 12 th st SPACE Retreat.
General Motion Rest: Quasars Linear: Stars Keplerian: Binary Perturbed Keplerian: Asteroids, Satellites Complex: Planets, Space Vehicles Rotational: Earth,
Three-Body Problem No analytical solution Numerical solutions can be chaotic Usual simplification - restricted: the third body has negligible mass - circular:
Motions of the Earth ….it ’ s what moves us. Two motions of the Earth Rotation - Circular movement of an object around an axis Revolution -The movement.
8/8/2011 Physics 111 Practice Problem Statements 13 Universal Gravitation SJ 8th Ed.: Chap 13.1 – 13.6 Overview - Gravitation Newton’s Law of Gravitation.
Unit 7 (Ch. 16) – Earth in the Solar System Bach 04/08/10 Ch. 16 Vocabulary – Our Solar System (p. 509, 15 terms + 9)
One Kind of Orbit of Collision Related with Lagrangian Libration Points Rosaev A.E. 1 1 FGUP NPC “NEDRA” Yaroslavl, Russia,
The Birth of a Solar System: Governing Laws. Newton’s Law of Universal Gravitation  Force – A push or a pull  Gravity – force of attraction between.
The outer solar system: some points of physics A few points of physics I didn’t deal with earlier.
The Solar System Missions. planets not shown to scale >> MercuryVenusEarthMarsJupiterSaturnUranusNeptunePluto Mean Distance from the Sun (AU)
Some problems in the optimization of the LISA orbits Guangyu Li 1 , Zhaohua Yi 1,2 , Yan Xia 1 Gerhard Heinzel 3 Oliver Jennrich 4 1 、 Purple Mountain.
University of Colorado Boulder ASEN 5070: Statistical Orbit Determination I Fall 2015 Professor Brandon A. Jones Lecture 2: Basics of Orbit Propagation.
The Solar System Missions. Comparative Planetology * The study of the similarities and dissimilarities of the constituents of the solar system. * Provides.
Earth and spaces. Earth and spaces words cards Earth sun Moon Planets Star Solar system Mercury Venus Mars Jupiter Saturn.
Celestial Mechanics VI The N-body Problem: Equations of motion and general integrals The Virial Theorem Planetary motion: The perturbing function Numerical.
Celestial Mechanics VII
Celestial Mechanics V Circular restricted three-body problem
3-4. The Tisserand Relation
The Earth-Moon System Moon Mass x 1022 kg
Kepler’s Laws of Orbital Motion
5th Austrian Hungarian Workshop Frequencies of librational motions around L4 Renáta Rajnai Eötvös University, Budapest, Hungary 9 April 2010 Vienna.
Astronomy 340 Fall 2005 Class #3 13 September 2005.
LRO Mission Baseline Ephemeris v10.0
Science Study Guide 4th Quarter, 7th Grade.
Solar System.
The Earth-Moon System Moon Mass x 1022 kg
Eclipses and the Motion of the Moon
& Other Objects in Space
1. What is the force of gravity between a 3
Zhaohua Yi 1,2, Guangyu Li 1 Gerhard Heinzel 3, Oliver Jennrich 4
Our Solar System.
Presentation transcript:

В.В.Сидоренко (ИПМ им. М.В.Келдыша РАН) А.В.Артемьев, А.И.Нейштадт, Л.М.Зеленый (ИКИ РАН) Квазиспутниковые орбиты: свойства и возможные применения в астродинамике Таруса, 2014 Семинар «Механика, управление и информатика», посвященный 100-летию со дня рождения П.Е. Эльясберга

Квазиспутниковые орбиты 1:1 mean motion resonance! Resonance phase  ’ librates around 0 (  and ’ are the mean longitudes of the asteroid and of the planet) J. Jackson (1913) – the first(?) discussion of QS-orbits

Phobos – one of the Mars natural satellites “Phobos-grunt” spacecraft Quasi-satellite orbits A.Yu.Kogan (1988), M.L.Lidov, M.A.Vashkovyak (1994) – the consideration of the QS-orbits in connection with the russian space project “Phobos”

Namouni(1999), Namouni et. al (1999), S.Mikkola, K.Innanen (2004),… - the investigations of the secular evolution in the case of the motion in QS- orbit Quasi-satellite orbits Real asteroids in QS-orbits: 2002VE68 – Venus QS; 2003YN107, 2004GU9, 2006FV35 – Earth QS; 2001QQ199, 2004AE9 – Jupiter’s QS ……………………

Asteroid (2004GU9) No close encounters with Venus or Mars!

Asteroid (2004GU9) Variation of the resonant phase Trajectory of the asteroid 2004GU9

Asteroid (2004GU9 ) The evolution of the orbital elements (CR3BP!)

Model: nonplanar circular restricted three-body problem “Sun-Planet-Asteroid” - small parameter of the problem

Orbital elements - mean longitude

Time scales at the resonance T 1 - orbital motions periods T 2 - timescale of rotations/oscillations of the resonant argument (some combination of asteroid and planet mean longitudes) T 3 - secular evolution of asteroid’s eccentricity e, inclination i, argument of prihelion ω and ascending node longitude Ω. T 1 << T 2 << T 3 Strategy: double averaging of the motion equations Nonplanar circular restricted three-body problem “Sun-Planet-Asteroid”

Initial variables (Delaunay coordinates): Nonplanar circular restricted three-body problem “Sun-Planet-Asteroid” First transformation: where

Hamiltonian of the problem: Nonplanar circular restricted three-body problem “Sun-Planet-Asteroid” where the disturbing function is

Partition of the variables at 1:1 MMR: “slow” variables Nonplanar circular restricted three-body problem “Sun-Planet-Asteroid” “semi-fast” variable “fast” variable First averaging – averaging over the fast variable :

Resonant approximation Scale transformation Slow-fast system SF-Hamiltonian and symplectic structure Slow variables Fast variables -approximate integral of the problem - truncated averaged disturbing function

Averaging over the fast subsystem solutions on the level Н = ξ Problem: what solution of the fast subsystem should be used for averaging ? QS-orbit or HS-orbit?

Secular effects: examples Nonplanar circular restricted three-body problem “Sun-Planet-Asteroid” Parameters:

Scaling A – the motion in QS-orbit is perpetual B – the abundances of the perpetual and temporary QS-motions are more or less comparable C- the motion in QS-orbit is mainly temporary

Asteroid (2004GU9) Variation of the resonant phase Current and W

Asteroid (2004GU9)

Distant retrograde orbits in the Earth+Moon system Preliminary investigation under the scope of CR3BP Numerical investigation of SC dynamics in QS- orbit, taking into account the perturbation due to the solar gravity field Main problem The Moon’s Hill sphere has a radius of 60,000 km (1/6th of the distance between the Earth and Moon). So the QS-orbits outside Hill sphere are large enough and experience substantial perturbations from the Sun.

Preliminary investigation under the scope of planar CR3BP Motion equations: Synodic (rotating) reference frame Jacobi integral

Distant retrograde periodic orbits (family f)

Stability indexes Sufficient stability condition (under the linear approximation):

Direct periodic orbits (family h1)

Direct periodic orbits (family h2)

Direct periodic orbits (families h1,h2) Stability indexes Sufficient stability condition (under the linear approximation):

Numerical integration, taking into account the gravity fields and actual motion of Moon, Earth and Sun (JPL DE405) 180 days in QS-orbit The initial distance to the moon - 40% of the distance Earth-Moon The initial epoch – 01/06/2012

Numerical integration, taking into account the gravity fields and actual motion of Moon, Earth and Sun (JPL DE405) 270 days in QS-orbit The initial distance to the moon - 30% of the distance Earth-Moon The initial epoch – 01/06/2012

Numerical integration, taking into account the gravity fields and actual motion of Moon, Earth and Sun (JPL DE405) 1.5 year in QS-orbit The initial distance to the moon - 25% of the distance Earth-Moon The initial epoch – 01/06/2012

Numerical integration, taking into account the gravity fields and actual motion of Moon, Earth and Sun (JPL DE405) First year in QS-orbit The initial distance to the moon - 25% of the distance Earth-Moon The initial epoch – 01/06/2012

Transfer trajectories to DRO

Stable manifold of Lyapunov orbit as a transfer orbit? X.Ming, X.Shijie (2009)

Применение квазиспутниковых орбит для «хранения» астероидов Циолковский: Исследование мировых пространств реактивными приборами (дополнение гг) эксплуатация ресурсов астероидов Lewis, 1996

Перемещение астероидов в окрестность Земли

Спасибо за внимание!