Тяжелые ядра в космосе – источник радиационной опасности вблизи Земли и в межпланетном пространстве Heavy Nuclei in Space – the Source of Danger in the.

Slides:



Advertisements
Similar presentations
Cosmic Rays and Space Weather
Advertisements

BELGISCH INSTITUUT VOOR RUIMTE-AERONOMIE INSTITUT D’AERONOMIE SPATIALE DE BELGIQUE BELGIAN INSTITUTE FOR SPACE AERONOMY BELGISCH INSTITUUT VOOR RUIMTE-AERONOMIE.
New results of radiation environment investigation by Liulin-5 experiment in the human phantom aboard the International Space Station.
Radiation Environment in a Human Phantom aboard the International Space Station during the Minimum of 23-rd Solar Cycle Semkova J. 1, Koleva R. 1, Maltchev.
18-OCT-2005 Lyndon B. Johnson Space Center space radiation analysis group 1 Operational Aspects of Space Radiation Analysis October 18, 2005 Mark Weyland.
Cosmic Ray Using for Monitoring and Forecasting Dangerous Solar Flare Events Lev I. Dorman (1, 2) 1. Israel Cosmic Ray & Space Weather Center and Emilio.
OVERVIEW OF SOLAR ENERGETIC PARTICLE EVENT HAZARDS TO HUMAN CREWS Lawrence W. Townsend University of Tennessee.
Cosmic-Ray Antiproton Spatial Distributions Simulated in Magnetosphere Michio Fuki Faculty of Education, Kochi University 2-5-1, Akebono-cho, Kochi ,
Space Radiation Honglu Wu, Ph.D. NASA Johnson Space Center.
Cosmic rays in solar system By: Tiva Sharifi. Cosmic ray The earth atmosphere is bombarded with the energetic particles originating from the outer space.
Space Weather Radiation Hazards REU Summer School By Ron Zwickl NOAA Space Environment Center June 14, 2007.
Danish Space Research Institute Danish Small Satellite Programme FH Space_Environment.ppt Slide # 1 Flemming Hansen MScEE, PhD Technology Manager.
Space radiation dosimetry and the fluorescent nuclear track detector Nakahiro Yasuda National Institute of Radiological Sciences.
What are the Forms of Hazardous Radiation? Stanley B. Curtis Fred Hutchinson Cancer Research Center, ret. & Dept. of Environmental Health University of.
From Geo- to Heliophysical Year: Results of CORONAS-F Space Mission International Conference «50 Years of International Geophysical Year and Electronic.
8/11/20063 rd SPENVIS USERS WORKSHOP Engineering Models for Galactic Cosmic Rays and Solar Protons: Current Status Stephen Gabriel Professor of Aeronautics.
PHOEBUS* on LISA: A Proposal for Solar Physics on LISA INFN-SPAZIO/2 Riunione sulle prospettive della Fisica Astroparticellare nello spazio LNF, 16 Febbraio.
EFFECTS of the TERRESTRIAL MAGNETOSPHERE on RADIATION HAZARD on MOON MISSIONS R. Koleva, B. Tomov, T. Dachev, Yu. Matviichuk, Pl. Dimitrov, Space and Solar-Terrestrial.
Radiation conditions during the GAMMA-400 observations:
NEEP 541 Radiation Interactions Fall 2003 Jake Blanchard.
1 Introduction The TOP-modelPotential applicationsConclusion The Transient Observations-based Particle Model and its potential application in radiation.
1 Space Radiation Effects Tutorial E. De Donder (BIRA) 23/03/2012 at ROB 
P. Scampoli - 24th ICNTS Bologna, September 4,
System for Radiation Environment characterization (fluxes, doses, dose equivalents at Earth, Moon and Mars) on hourly thru yearly time frame Example: Snapshots.
INTERNATIONAL STANDARDIZATION ORGANIZATION TECHNICAL SPECIFICATION Space Environment (Natural and Artificial) Probabilistic model of fluences and.
11 February 2000Genova (I)1 ESA Space Environment & Effects Analysis Section Space Radiation Environment P. Nieminen, ESA/ESTEC, The Netherlands  Overview.
On the probability of solar cosmic ray fluency during SEP event in dependence of the level of solar activity L.I. Dorman a,b, L.A. Pustil’nik a (a) Israel.
GCR Primaries (See Wilson et al. poster for latest CRaTER proton albedo map) RELATIVE CONTRIBUTIONS OF GALACTIC COSMIC RAYS AND LUNAR PARTICLE ALBEDO TO.
Evaluation of the flux of CR nuclei inside the magnetosphere P. Bobik, G. Boella, M.J. Boschini, M. Gervasi, D. Grandi, K. Kudela, S. Pensotti, P.G. Rancoita.
The PLANETOCOSMICS Geant4 application L. Desorgher Physikalisches Institut, University of Bern.
C. J.Joyce 1, J. B. Blake 2, A. W. Case 3, M. Golightly 1, J. C. Kasper 3, J. Mazur 2, N. A. Schwadron 1, E. Semones 4, S. Smith 1, H. E. Spence 1, L.
Ground level enhancement of the solar cosmic rays on January 20, A.V. Belov (a), E.A. Eroshenko (a), H. Mavromichalaki (b), C. Plainaki(b), V.G.
Is the Terrestrial Magnetosphere a Natural Radiation Shield on Moon Space Missions ? R. Koleva, B. Tomov, T. Dachev, Yu. Matviichuk, Pl. Dimitrov, Space.
11/12/2015NASA-JSC and DIAS1 Study of Sensitivity Fading of CR-39 Detectors during Long Time Exposure D. Zhou a, b, D. O’Sullivan c, E. Semones a, N. Zapp.
Dose Predictions for Moon Astronauts Image Source: Nicholas Bachmann, Ian Rittersdorf Department of Nuclear Engineering and Radiological.
Space Environment SSE-120 Please type in your questions and raise your hand so we can answer it during class.
Radiation on Planetary Surfaces M. S. Clowdsley 1, G. DeAngelis 2, J. W. Wilson 1, F. F. Badavi 3, and R. C. Singleterry 1 1 NASA Langley Research Center,
NMDB - the European neutron monitor database Karl-Ludwig Klein, for the NMDB consortium.
Space Radiation Health Effects of Astronauts in Explorative Missions
Exploitation of Space Ionizing Radiation Monitoring System in Russian Federal Space Agency STRUCTURE OF THE MONITORING SYSTEM The Monitoring System includes.
Trapped positrons and electrons observed by PAMELA Vladimir Mikhailov NRNU MEPHI, Moscow, Russia For PAMELA collaboration ICPPA 2015, PAMELA workshop,
Cosmic rays at sea level. There is in nearby interstellar space a flux of particles—mostly protons and atomic nuclei— travelling at almost the speed of.
Earth-Moon-Mars Radiation Environment Model N. A. Schwadron, K. Kozarev, L. Townsend, M. Desai, M. A. Dayeh, F. Cucinotta, D. Hassler, H. Spence, M. Pourars,
The spatial and temporal distribution of solar and galactic cosmic rays S. V. Tasenko 1, P. V. Shatov 1, I. A. Skorokhodov 1, I. V. Getselev 1,2, M. Podzolko.
Cosmic Rays2 The Origin of Cosmic Rays and Geomagnetic Effects.
Trapped radiation models
1 Space technology course : Space Radiation Environment and its Effects on Spacecraft Components and Systems Space radiation environment Space Radiation.
Radiation Storms in the Near Space Environment Mikhail Panasyuk, Skobeltsyn Institute of Nuclear Physics of Lomonosov Moscow State University.
Primary Cosmic Ray Spectra in the Planet Atmospheres Marusja Buchvarova 1, Peter Velinov 2 (1) Space Research Institute – Bulgarian Academy of Sciences,
Daniel Matthiä(1)‏, Bernd Heber(2), Matthias Meier(1),
Athens University – Faculty of Physics Section of Nuclear and Particle Physics Athens Neutron Monitor Station Study of the ground level enhancement of.
Solar and Cosmic Ray Energetic Particle Models : Space Weather Aspects
It is considered that until now in the 24th cycle of solar activity 2 ground level enhancements of solar cosmic rays (GLEs) are registered: on May 17,
Dose Predictions for Moon Astronauts Image Source: Nicholas Bachmann, Ian Rittersdorf Nuclear Engineering and Radiological Sciences.
Approaches to forecasting radiation risk from Solar Energetic Particles Silvia Dalla (1), Mike Marsh (2) & Timo Laitinen (1) (1) University of Central.
Earth’s Magnetosphere Space Weather Training Kennedy Space Center Space Weather Research Center.
SOLAR COSMIC RAYS AND OZONE LAYER OF THE EARTH (3D modeling) M27 Alexei Krivolutsky 1, Georgy Zakharov 1, Tatyana Vyushkova 1, Alexander Kuminov 1, and.
Atmospheric radiation modeling of galactic cosmic rays using LRO/CRaTER and the EMMREM model with comparisons to balloon and airline based measurements[1]
ESA SSA Measurement Requirements for SWE Forecasts
Multispacecraft observation of solar particle events contribution in the space radiation exposure on electronic equipment at different orbits Vasily S.
A Relation between Solar Flare Manifestations and the GLE Onset
Search for Cosmic Ray Anisotropy with the Alpha Magnetic Spectrometer on the International Space Station G. LA VACCA University of Milano-Bicocca.
Spacecraft Anomaly Analysis and Prediction System – SAAPS
Lunar Reconnaissance Orbiter CRaTER Critical Design Review
Vladimir Mikhailov (MEPhI) on behalf PAMELA collaboration
SPACE RADIATION DOSIMETRY
Quantification of solar wind parameters from measurments by SOHO and DSCOVR spacecrafts during series of Interplanetary Coronal Mass Ejections in the.
Proxima (TRAPPIST1) Exreme Events
NMDB - the European neutron monitor database
Richard B. Horne British Antarctic Survey Cambridge UK
Presentation transcript:

Тяжелые ядра в космосе – источник радиационной опасности вблизи Земли и в межпланетном пространстве Heavy Nuclei in Space – the Source of Danger in the Vicinity of the Earth and in the Interplanetary Space Mikhail Panasyuk Moscow State University Space Weather Effects on Humans: in Space and on Earth International Conference Space Research Institute Moscow, Russia June 4-8, 2012

Apollo –11 N. Armstrong B. Aldrin M. Collins GCR (Fe) The first “visualization” of HZE

Absorbed dose 0,5 Zv Electrons Nuclei HZE particles effects

## SEE SEE Years Minimum of SA Maximum of SA Одиночные сбои и поток ГКЛ Single Events Effects HZE particles impact on microchips

HZE particles in the Earth’s Environment

Внешний пояс - р до ~ МэВ - е до нескольких МэВ Внутренний пояс - р до сотен МэВ - е до нескольких МэВ ~7Rз The Earth’s Radiation Belts

Потоки электронов и протонов различных энергий в плоскости геомагнитного экватора. R - расстояние от центра Земли, выраженное в радиусах Земли. Стабильный пояс электронов с E e > 20 МэВ выделен жирной линией

Energy spectra of cosmic radiation Solar wind (H) Solar energetic particles Galactic and extragalactic cosmic rays (H) lg E (eV/nucl) lg I 1 MeVn 6 1 GeVn 1 TeVn 1keV/n Radiation belts

Низкие высоты Low altitudes (LEO)

Радиационное окружение Земли ISS 400 km

South Atlantic Anomaly h=500km, 1970, B model JSFC12/66(1970) AE8max Магнитное поле Частицы h = 400 km

ЮАА Широта, град Долгота, град SEE in the SAA

протоны, >40 MэВ W

Solar cycle dependence. Proton flux year Atmospheric density

Secular Variations of Geomagnetic Field (Model IGRF) SAA: magnetic field secular variations Magnetic field become weaker ( at h = const) - SAA moving to the west

~ 25 µ CR track Interection region Sensitive region ~ 5 µ neutrons p α Mg Shielding Semiconductor chip

Solar neutrons Local neutrons Albedo neutrons GCR protons Neutron Environment

Secondary protons&neutrons

Local neutrons generation vs S/C mass МИР

Neutron dose equivalent(μSv/h) Neutron dose equivalent rate was estimated using the energy spectrum with the ICRP-74 coefficient. Neutron dose equivalent (Goka et al) (From March 23 to July 7, All orbit)

км км км Спутник APEX, эллиптическая орбита Altitude dependence of SEE

SEP

Solar wind (H) Solar cosmic rays Galactic cosmic rays lgE (эВ/нукл) Поток частиц, отн.ед 1 МэВ/нукл 6 1 ГэВ/ нукл1 ТэВ/ нукл1кэВ/нукл Solar Energetic Particles

SEE during SEP’s events and modeling of SEE

SEE at LEO

How many HZE particles in SEP events?

HZE abundance in SEP Nymmik, 2012,private communication

HZE abundance in SEP Abundance of HZE particles on the tail of SEP’s events is unerestimated? Nymmik, 2012,private communication

«Нейтронный отклик» солнечных вспышек “Neutron’s response” of solar flares

Neutron dose equivalent(μSv/h) We have investigated the neutron dose equivalent inside the ISS on the influence of solar flare. Neutron dose equivalent (For 24 hours from 12(UT) on April 15) Animation\animation.htm

Galactic cosmic rays Галактические космические лучи

GCR modulation ?

Instead of conclusions PROBLEMS (just a sketch)

PROBLEMS 1. Limitation of knowledge to estimate the real risk

Роль фрагментов ядерных реакций p +Si  Продукты ядерного взаимодействия протонов КИ с материалом бортовой электроники генерируют с электронно- дырочные пары и дефекты, приводящие к сбою электроники

## SEE vs LTE

However… Результаты испытаний HXRHPPC на ТЗЧ Lintz et al, “ Single Event Effects Hardening and Characterization of Honeywell’s RHPPC Processor Integrated Circuit”

Rat’s expedition to Mars Rat’s behavior is changing after 3 month’s of HZE exposure !

Expedition to Mars Do we need one way ticket?

PROBLEMS 2. Limitation of on ground facilities for modeling of space environment

Neutrons in space and in the Earth’s atmosphere

How to minimize risk from HZE? Electronics Onground space qualification tests (certification) with using of accelerator’s facilities – just a black hole for funds What to do ? - To combine design/manufacturing process with radiation testing - To imply special soft/scheme/construction decisions to minimize SEE - Planning of missions

ЮАА Широта, град Долгота, град Одиночные сбои в ЮАА Planning of missions Spacecraft is a robot, but with elements a manual management by people

How to minimize risk from HZE? Humans - To combine design/manufacturing process with radiation testing - To imply special soft/scheme/construction decisions to minimize SEE - Planning of missions, new estimation of risks

How to minimize risk from HZE? Humans Planning of missions Probably, we are on a way of developing temporal limitation for long- duration space missions on concept of new risk’s estimation Time – the only real shield against HZE particles for human’s body in space

Thank you