Design Analysis of Plate Heat Exchangers

Slides:



Advertisements
Similar presentations
Heat Exchanger Design Thermal / Fluid System Design Final Project Department of Mechanical Engineering Fall 2005 December 13, 2005 Team Members: Andrew.
Advertisements

Beedes – thermal process engineers Compact Heat Exchangers in Industrial Evaporators Fred Brotherton.
Convection in Flat Plate Turbulent Boundary Layers P M V Subbarao Associate Professor Mechanical Engineering Department IIT Delhi An Extra Effect For.
Kern’s Description of Shell Side Flow in SHELL-AND-TUBE HEAT EXCHANGER P M V Subbarao Professor Mechanical Engineering Department I I T Delhi Another.
Chapter 4.2: Flow Across a Tube Bundle Heat Exchanger (Tube Bank)
Me 340 Project Ben Richards, Michael Plooster. -In many applications it is desirable to insulate a pipe in order to protect those working near it. -It.
 A 'heat exchanger' may be defined as an equipment which transfers the energy from a hot fluid to a cold fluid. Here, the process of heating or cooling.
Heat transfer to fluids without phase change
Design of Systems with INTERNAL CONVECTION P M V Subbarao Associate Professor Mechanical Engineering Department IIT Delhi An Essential Part of Exchanging.
Spiral Condensors. Working Principle The Spiral Condensor consists of two sheets stainless steel strips which have been wounded from the centre.
MECH 221 FLUID MECHANICS (Fall 06/07) Chapter 9: FLOWS IN PIPE
CHE/ME 109 Heat Transfer in Electronics
California State University, Chico
Thermal Development of Internal Flows P M V Subbarao Associate Professor Mechanical Engineering Department IIT Delhi Concept for Precise Design ……
P M V Subbarao Professor Mechanical Engineering Department I I T Delhi
Development of Turbine Cascades
Closure of Kern’s Method
Kern’s Description of Shell Side Flow in SHELL-AND-TUBE HEAT EXCHANGER
SHELL-AND-TUBE HEAT EXCHANGERS
Correlations for INTERNAL CONVECTION P M V Subbarao Associate Professor Mechanical Engineering Department IIT Delhi An Essential Part of Exchanging Heat……..
Computation of FREE CONVECTION P M V Subbarao Associate Professor Mechanical Engineering Department IIT Delhi Quantification of Free …….
Actual Shell Side Pressure Drop : Bell-Delaware Method
Heat Convection : Cylinder in Cross Flow P M V Subbarao Associate Professor Mechanical Engineering Department IIT Delhi A Common Industrial Application.
Heat Exchangers with Cross Flow past Cylinders P M V Subbarao Professor Mechanical Engineering Department I I T Delhi Another Common Industrial Application!!!
Kern Method of SHELL-AND-TUBE HEAT EXCHANGER Analysis
Recent Advances in Condensation on Tube Banks P M V Subbarao Professor Mechanical Engineering Department I I T Delhi Reduce the Degree of Over Design!!!
Hydraulic Analysis of STHE Using Bell Delaware Method
Results of Kern Method Basic Kinematic Details Group No. Tube Side Velocity (m/s) Number of Tubes Shell Diameter length STHX (m) Ds/L
Cross Flow Heat Exchangers P M V Subbarao Professor Mechanical Engineering Department I I T Delhi A Major Element for the Success of Combustion based.
Chapter 7 Sections 7.4 through 7.8
Fluid FRICTION IN PIPES
Convection Prepared by: Nimesh Gajjar. CONVECTIVE HEAT TRANSFER Convection heat transfer involves fluid motion heat conduction The fluid motion enhances.
Momentum Heat Mass Transfer
Design Analysis of Plate Heat Exchangers
Steam Condenser II Prof. Osama El Masry
1 ME421 Heat Exchanger Design Drain Water Heat Recovery System Project Presentation Group #5.
Pressure drop prediction models o Garimella et al. (2005) o Considered parameters o Single-phase pressure gradients o Martinelli parameter o Surface tension.
Enhancement of Heat Transfer P M V Subbarao Associate Professor Mechanical Engineering Department IIT Delhi Invention of Compact Heat Transfer Devices……
Design Formulae for Mingled Shell-side stream P M V Subbarao Professor Mechanical Engineering Department I I T Delhi Corrections for Non-Ideal (Cross.
Design Formulae for Mingled Shell-side stream P M V Subbarao Professor Mechanical Engineering Department I I T Delhi A Confluence Model for A Circuitous.
ME421 Heat Exchanger Design
The Family of Shell and Tube Heat Exchangers P M V Subbarao Professor Mechanical Engineering Department I I T Delhi Family members with Simple Geometrical.
Condensation and Boiling Heat Transfer Source: Vishwas V. Wadekar, HTFS, Aspen Technology J.P. Holman boiling, condensation : high heat transfer rates.
Lesson 23 HEAD LOSS DEFINE the terms head loss, frictional loss, and minor losses. DETERMINE friction factors for various flow situations using the Moody.
30 th June 20111Enrico Da Riva, V. Rao Parametric study using Empirical Results June 30 th 2011 Bdg 298 Enrico Da Riva,Vinod Singh Rao CFD GTK.
CLIC Prototype Test Module 0 Super Accelerating Structure Thermal Simulation Introduction Theoretical background on water and air cooling FEA Model Conclusions.
1 ME421 Heat Exchanger Design Drain Water Heat Recovery System Project Presentation Group #5.
Convection in Flat Plate Boundary Layers P M V Subbarao Associate Professor Mechanical Engineering Department IIT Delhi A Universal Similarity Law ……
Reynolds Analogy It can be shown that, under specific conditions (no external pressure gradient and Prandtle number equals to one), the momentum and heat.
Compressible Frictional Flow Past Wings P M V Subbarao Professor Mechanical Engineering Department I I T Delhi A Small and Significant Region of Curse.
Analysis of Mingled Shell-side stream P M V Subbarao Professor Mechanical Engineering Department I I T Delhi Splitting of A Circuitous Flow into Simple.
Convection Heat Transfer in Manufacturing Processes P M V Subbarao Professor Mechanical Engineering Department I I T Delhi Mode of Heat Transfer due to.
Heat Transfer Su Yongkang School of Mechanical Engineering # 1 HEAT TRANSFER CHAPTER 7 External flow.
CONVECTION : An Activity at Solid Boundary P M V Subbarao Associate Professor Mechanical Engineering Department IIT Delhi Identify and Compute Gradients.
Comparison of Heat Exchanger Types Shannon Murphy, Conor Sandin, Erin Tiedemann Department of Chemical Engineering, University of New Hampshire Results.
Heat Transfer Su Yongkang School of Mechanical Engineering # 1 HEAT TRANSFER CHAPTER 8 Internal flow.
Internal Flow: General Considerations. Entrance Conditions Must distinguish between entrance and fully developed regions. Hydrodynamic Effects: Assume.
Chapter 8: Internal Flow
The inner flow analysis of the model
Design Analysis of Plate Heat Exchangers
Pressure drop prediction models
Plate Heat Exchanger (PHE)
Comparison between Serrated & Notched Serrated Heat Exchanger Fin Performance Presented by NABILA RUBAIYA.
Fundamentals of Convection
Internal Flow: General Considerations
Modification of Capacity Ratio in Simple HXs
Temperature Profiles in Heat Exchangers
SHELL-AND-TUBE HEAT EXCHANGERS
P M V Subbarao Professor Mechanical Engineering Department I I T Delhi
Heat Transfer Correlations for Internal Flow
Presentation transcript:

Design Analysis of Plate Heat Exchangers P M V Subbarao Professor Mechanical Engineering Department I I T Delhi Understadning of Highly Specialized Design Features……

EFFECTIVE TEMPERATURE DIFFERENCE

Plates Inlet / outlet Media 2 Inlet / outlet Media 1 Distribution area Fully supported gasket groove Heat transfer area Distribution area Inlet / outlet Media 2 Inlet / outlet Media 1 engineering-resource.com

Mean Channel Flow Gap Flow channel is the conduit formed by two adjacent plates between the gaskets. Despite the complex flow area created by Chevron plates, the mean flow channel gap b, can be identified as where p is the plate pitch or the outside depth of the corrugated plate and t is the plate thickness, b is also the thickness of a fully compressed gasket, as the plate corrugations are in metallic contact. Plate pitch should not be confused with the corrugation pitch.

Mean flow channel gap b is required for calculation of the mass velocity and Reynolds number and is therefore a very important value that is usually not specified by the manufacturer. If not known or for existing units, the plate pitch can be determined from the compressed plate pack (between the head plates) ,Lc which is usually specified on drawings. Then p is determined as : where Nt is the total number of plates.

Channel Flow Area One channel flow area is given by Ax: where Lw is the effective plate width. The channel equivalent diameter De is given by:

where Then

Heat Transfer Coefficient With plate heat exchangers, heat transfer is enhanced. The heat transfer enhancement will strongly depend on the Chevron inclination angle b, relative to flow direction, Both the heat transfer and the friction factor increase with b. On the other hand, the performance of a Chevron plate will also depend upon the surface enlargement factor f, corrugation profile, gap b. In spite of extensive research on plate heat exchangers, generalized correlations for heat transfer and friction factor are not available.

Flow Reynolds Numbers The transition to turbulence occurs at low Reynolds numbers and, as a result, the gasketed-plate heat exchangers give high heat transfer coefficients. The Reynolds number, Re, based on channel mass velocity and the equivalent diameter,De , of the channel is defined as: where Ncp is the number of channel per pass and is obtained from where Nt is the total number of plates and Np is the number of passes.