Holographic Entanglement Entropy and Black Holes Tadashi Takayanagi(IPMU, Tokyo) based on arXiv:1008.3439 JHEP 11(2011) with Tomoki Ugajin (IPMU) arXiv:1010.3700.

Slides:



Advertisements
Similar presentations
ICHEP conference, Paris, 22/07/10. Emergence Current Paradigm FUNDAMENTAL FORCES: carried by elementary particles.
Advertisements

Martín Schvellinger Instituto de Física de La Plata - CONICET Departamento de Física - UNLP The gauge/gravity duality and Non-Relativistic Quantum Field.
Summing planar diagrams
Gauge/gravity and condensed matter
Wald’s Entropy, Area & Entanglement Introduction: –Wald’s Entropy –Entanglement entropy in space-time Wald’s entropy is (sometimes) an area ( of some metric)
A Matrix Model for Black Hole Thermalization Joseph Polchinski Kavli Institute for Theoretical Physics University of California at Santa Barbara N. Iizuka.
(In)Stabilities and Complementarity in AdS/CFT Eliezer Rabinovici The Hebrew University, Jerusalem Based on works with J.L.F Barbon Based on work with.
A New Holographic View of Singularities Gary Horowitz UC Santa Barbara with A. Lawrence and E. Silverstein arXiv: Gary Horowitz UC Santa Barbara.
The attractor mechanism, C-functions and aspects of holography in Lovelock gravity Mohamed M. Anber November HET bag-lunch.
Entanglement in Quantum Critical Phenomena, Holography and Gravity Dmitri V. Fursaev Joint Institute for Nuclear Research Dubna, RUSSIA Banff, July 31,
Mohamed Anber HEP Bag Lunch April 1st With Lorenzo Sorbo
Quantum Entanglement and Gravity Dmitri V. Fursaev Joint Institute for Nuclear Research and Dubna University “Gravity in three dimensions”, ESI Workshop,
AdS4/CFT3+gravity for Accelerating Conical Singularities arXiv: arXiv: Mohamed Anber HET Bag Lunch Novemberr 12th.
The 2d gravity coupled to a dilaton field with the action This action ( CGHS ) arises in a low-energy asymptotic of string theory models and in certain.
Strings and Black Holes David Lowe Brown University AAPT/APS Joint Fall Meeting.
The Quantum Space-Time Juan Maldacena Institute for Advanced Study 25 th Solvay Conference October 2011.
Quantum Gravity and Quantum Entanglement (lecture 2) Dmitri V. Fursaev Joint Institute for Nuclear Research Dubna, RUSSIA Talk is based on hep-th/
Entropy localization and distribution in the Hawking radiation Horacio Casini CONICET-Intituto Balseiro – Centro Atómico Bariloche.
HOLOGRAPHY, DIFFEOMORHISMS, AND THE CMB Finn Larsen University of Michigan Quantum Black Holes at OSU Ohio Center for Theoretical Science September
Cosmological Vacuum Selection and Meta-Stable Susy Breaking Ioannis Dalianis IFT-University of Warsaw.
Forming Nonsingular Black Holes from Dust Collapse by R. Maier (Centro Brasileiro de Pesquisas Físicas-Rio de Janeiro) I. Damião Soares (Centro Brasileiro.
Holographic Description of Quantum Black Hole on a Computer Yoshifumi Hyakutake (Ibaraki Univ.) Collaboration with M. Hanada ( YITP, Kyoto ), G. Ishiki.
GAUGE/GRAVITY AND HEAVY ION PHYSICS How string theory might say something about strong coupling Wilke van der Schee June 29, 2011.
An introduction to the Gravity/Fluid correspondence and its applications Ya-Peng Hu College of Science, Nanjing University of Aeronautics and Astronautics,
Holographic Entanglement Entropy from Cond-mat to Emergent Spacetime
Louisville March 22, 2006 Andrew Chamblin Memorial An AdS Thermal Properties of Strongly Coupled Gauge Theories with Fundamental Matter from Gauge/Gravity.
Black Holes, Entropy, and Information Gary Horowitz UCSB.
Einstein Field Equations and First Law of Thermodynamics Rong-Gen Cai (蔡荣根) Institute of Theoretical Physics Chinese Academy of Sciences.
Shear viscosity of a highly excited string and black hole membrane paradigm Yuya Sasai Helsinki Institute of Physics and Department of Physics University.
The false vacuum bubble, the true vacuum bubble, and the instanton solution in curved space 1/23 APCTP 2010 YongPyong : Astro-Particle and Conformal Topical.
Disordered systems and the replica method in AdS/CFT Yasuaki Hikida (KEK) Ref. Fujita, YH, Ryu, Takayanagi, JHEP12(2008)065 April 13,
Cosmological Perturbations in the brane worlds Kazuya Koyama Tokyo University JSPS PD fellow.
Entanglement Entropy in Holographic Superconductor Phase Transitions Rong-Gen Cai Institute of Theoretical Physics Chinese Academy of Sciences (April 17,
Domain-wall/QFT correspondence Wen-Yu Wen Academia Sinica Feb 24, 2006 A Bridge Connecting Gravity and Gauge Theory.
Matrix Cosmology Miao Li Institute of Theoretical Physics Chinese Academy of Science.
AdS/CFT Correspondence and Entanglement Entropy Tadashi Takayanagi (Kyoto U.) Based on hep-th/ [Phys.Rev.Lett.96(2006)181602] hep-th/ [JHEP.
HIGHER SPIN SUPERGRAVITY DUAL OF KAZAMA-SUZUKI MODEL Yasuaki Hikida (Keio University) Based on JHEP02(2012)109 [arXiv: [hep-th]]; arXiv:
On Fuzzball conjecture Seiji Terashima (YITP, Kyoto) based on the work (PRD (2008), arXiv: ) in collaboration with Noriaki Ogawa (YITP)
Black holes sourced by a massless scalar KSM2105, FRANKFURT July, 21th 2015 M. Cadoni, University of Cagliari We construct asymptotically flat black hole.
1 AdS/CFT correspondence and generation of space-time in Matrix models March at KEK Hikaru Kawai arXiv: , , with T. Suyama arXiv: ,
Emergent Space-Time and and Induced Gravity Erik Verlinde University of Amsterdam Madrid, November 17 th, 2006 Some (Speculative) Ideas on “Strings versus.
Comments on entanglement entropy in the dS/CFT correspondence Yoshiki Sato ( Kyoto U. ) PRD 91 (2015) 8, [arXiv: ] 9th July.
Emergent IR Dual 2d CFTs in Charged AdS 5 Black Holes Maria Johnstone (University of Edinburgh) Korea Institute for Advanced Study (KIAS) 20 th February.
AdS/CFT Correspondence and Entanglement Entropy Tadashi Takayanagi (Kyoto U.) 弦理論と場の理論 --- 量子と時空の最前線 弦理論と場の理論 --- 近畿大 07’ Thanks to my collaborators:
SOME REFLECTIONS ON A POSSIBLE HOLOGRAPHIC DESCRIPTION OF TIME CHAPTER IN PROGRESS FOR MY FORTHCOMING BOOK “THE EMERGENCE OF SPACETIME IN STRING THEORY”
Entanglement in Quantum Gravity and Space-Time Topology
Entanglement Entropy from AdS/CFT Tadashi Takayanagi (Kyoto Univ.) Based on hep-th/ , , , , arXiv: , , ,
On String Theory Duals of Lifshitz-like Fixed Point Tatsuo Azeyanagi (Kyoto University) Based on work arXiv: (to appear in JHEP) with Wei Li (IPMU)
Microscopic entropy of black holes : a two-dimensional approach M. Cadoni, Capri 2004 Abstract Two-dimensional gravity models allow in many situations.
Holographic Description of Quantum Black Hole on a Computer Yoshifumi Hyakutake (Ibaraki Univ.) Collaboration with M. Hanada ( YITP, Kyoto ), G. Ishiki.
Heavy quark energy loss in finite length SYM plasma Cyrille Marquet Columbia University based on F. Dominguez, C. Marquet, A. Mueller, B. Wu and B.-W.
Quantum mechanics and the geometry of spacetime Juan Maldacena PPCM Conference May 2014.
Based on Phys. Rev. D 92, (R) (2015) 中科大交叉学科理论研究中心
Gauge/gravity duality in Einstein-dilaton theory Chanyong Park Workshop on String theory and cosmology (Pusan, ) Ref. S. Kulkarni,
New Insights into Quantum Gravity from Holography Gary Horowitz UC Santa Barbara with N. Engelhardt ( , and in progress)
Andrej Ficnar Columbia University Hard Probes 2010, Eilat, Israel October 12, 2010 Nonconformal Holography of Heavy Quark Quenching Andrej Ficnar, Jorge.
“Applied” String Theory Pinaki Banerjee The Institute of Mathematical Sciences, Chennai Department of Physics, Visva Bharati 12 th July, 2013.
Quantum Mechanical Models for Near Extremal Black Holes
Origin of Hawking radiation and firewalls
Scale vs Conformal invariance from holographic approach
Thermodynamic Volume in AdS/CFT
Cyrille Marquet Columbia University
A rotating hairy BH in AdS_3
Andrej Ficnar Columbia University
Solutions of black hole interior, information paradox and the shape of singularities Haolin Lu.
Based on the work submitted to EPJC
Quantum Spacetime and Cosmic Inflation
Gravity from Entanglement and RG Flow
Hysteresis Curves from 11 dimensions
Geometric Entropy and Hagedorn/Deconfinement Transition
Presentation transcript:

Holographic Entanglement Entropy and Black Holes Tadashi Takayanagi(IPMU, Tokyo) based on arXiv: JHEP 11(2011) with Tomoki Ugajin (IPMU) arXiv: with Wei Li (IPMU) Indian Strings Puri, Jan 4-11, 2011

① Introduction AdS/CFT has been a very powerful tool to understand the physics of black holes. [Strominger-Vafa 96’  AdS3/CFT2] In spite of tremendous progresses, there are still several unsolved or developing important problems on black holes in quantum gravity. The one which we would like to discuss here is about the dynamical aspects where we cannot employ the supersymmetries.

For example, consider the following problem: (1) Complete understandings on how the BH information problem is avoided in string theory ? [For static BH, there have been considerable developments: e.g. Maldacena 01’, Festuccia-Liu 07’, Hayden-Preskill 07’, Sekino-Susskind 08’, Iizuka-Polchinski 08’ …] How to measure creations and annihilations of BHs in holography ? In this talk, I would like to argue that the holographic entanglement entropy is a useful measure for this purpose.

A Quick Sketch of BH Information Problem A lot of matter ⇒ Pure state Black hole formation Thermal radiations (BH evaporation) ⇒ Mixed state ?? Contradict with QM ! Gravitational collapse

BH formation in AdS/CFT Thermalization in CFT BH formation in AdS [e.g. Chesler-Yaffe 08’, S. Bhattacharyya and S. Minwalla 09’] In particular, instantaneous excitations of CFTs are called quantum quenches. [e.g. Calabrese-Cardy 05’-10’] e.g. Mass quench Time BH AdS t m(t) m(t)=m m(t)=0: CFT

Cf. Thermalization in the probe D-brane AdS/CFT [Das-Nishioka-TT 10’] Thermalization in a probe D-brane ⇔ Horizon formation in its induced metric on the D-brane r Bulk observer Brane observer Emergent BH Probe D-brane AdS

Entropy Puzzle in AdS/CFT (a `classical analogue’ of information paradox) (i)In the CFT side, the von-Neumann entropy remains vanishing under a unitary evolutions of a pure state. (ii ) In the gravity dual, its holographic dual inevitably includes a black hole at late time and thus the entropy looks non-vanishing ! Thus, naively, (i) and (ii) contradict ! We will resolve this issue using entanglement entropy and study quantum quenches as CFT duals of BH creations and evaporations.

Another important question is (2) Entropy of Schwarzschild BH in flat spacetime ? Is there any holography in flat spacetime ? We will present one consistent outline about how the holography in flat space looks like by employing the entanglement entropy. e.g. Volume law (flat space) ⇔ Area law (AdS/CFT) highly entangled !

Contents ① Introduction ② BH Formations as Pure States in AdS/CFT ③ Entanglement Entropy as Coarse-grained Entropy ④ Holography and Entanglement in Flat Space ⑤ Conclusions

(2-1) Holographic Entanglement Entropy Divide a given quantum system into two parts A and B. Then the total Hilbert space becomes factorized We define the reduced density matrix for A by taking trace over the Hilbert space of B. A B Example: Spin Chain ② BH formations as Pure States in AdS/CFT

Now the entanglement entropy is defined by the von-Neumann entropy In QFTs, it is defined geometrically (called geometric entropy).

Holographic Entanglement Entropy The holographic entanglement entropy is given by the area of minimal surface whose boundary is given by. [Ryu-TT, 06’] (`Bekenstein-Hawking formula’ when is the horizon.)

Comments We need to employ extremal surfaces in the time-dependent spacetime. [Hubeny-Rangamani-TT, ] In the presence of a black hole horizon, the minimal surfaces typically wraps the horizon. ⇒ Reduced to the Bekenstein-Hawking entropy, consistently. Many evidences and no counter examples for 5 years, in spite of the absence of complete proof.

EE from AdS BH (i) Small A (ii) Large A

(2-2) Resolution of the Puzzle via Entanglement Entropy Our Claim: The non-vanishing entropy appears only after coase- graining. The von-Neumann entropy itself is vanishing even in the presence of black holes in AdS. First, notice that the (thermal) entropy for the total system can be found from the entanglement entropy via the formula This is indeed vanishing if we assume the pure state relation S A =S B.

Indeed, we can holographically show this as follows: [Hubeny-Rangamani-TT 07’] A Time Continuous deformation leads to S A =S B BH

Therefore, if the initial state does not include BHs, then always we have S A =S B and thus S tot =0. In such a pure state system, the total entropy is not useful to detect the BH formation. Instead, the entanglement entropy S A can be used to probe the BH formation as a coarse-grained entropy. [CFT calculation: Calabrese-Cardy 05’,..., (Finite Size effect ⇒ our work) Time evolutions of Hol EE: Hubeny-Rangamani-TT 07’ Arrastia-Aparicio-Lopez 10’, Albash-Johnson 10’ Balasubramanian-Bernamonti-de Boer-Copland-Craps- Keski-Vakkuri-Müller-Schäfer-Shigemori-Staessens 10’] t Quantum quench BH entropy S coase-grained = S A (t)-S div

③ Entanglement Entropy as Coarse-grained Entropy [Ugajin-TT 10’] (3-1) Evolution of Entanglement Entropy and BH formation As an explicit example, consider the 2D free Dirac fermion on a circle. AdS/CFT: free CFT quantum gravity with a lot of quantum corrections ! Assuming that the initial wave function flows into a boundary fixed point as argued in [Calabrese-Cardy 05’], we can approximate by where is the boundary state. The constant is a regularization parameter and measures the strength of the quantum quench:.

Calculations of EE (Replica method)

The final result of entanglement entropy is given by This satisfies σ B A

cf. Finite Size System at Finite Temperature (2D free fermion c=1 on torus) [07’ Azeyanagi-Nishioka-TT] σ SASA Thermal Entropy

Time evolution of entanglement entropy Time BH Holography BH formation and evaporation in extremely quantum gravity No information paradox at all in either side ! Quantum quench Quantum quench in free CFT

(3-2) More comments First of all, we can confirm that the scalar field X (= bosonization of the Dirac fermion) is thermally excited:

Correlation functions Size of BH Radiations Exponential decay ⇒ Thermal

Semi Classical AdS BHs ? For semi classical BHs, which are much more interesting, the dual CFT gets strongly coupled as usual and thus the analysis of the time evolution is difficult. However, we can still guess what will happen especially in the AdS3 BH case. S coase-grained = S A (t)-S div t Quantum quench BH entropy Universal (for any CFT) Poincare recurrence

④ Holography and Entanglement in Flat Space [Li-TT 10’] The entanglement entropy is a suitable observable in general setup of holography as in our BH example. Motivated by this, finally we would like to discuss what a holography for the flat spacetime looks like. So, simply consider Note: We may regard this as a logarithmic version of Lifshitz backgrounds:

Correlation functions We can compute the holographic n-point functions following the bulk-boundary relation just like in AdS/CFT. Assuming a scalar in R d+1 like the dilaton: Then we find that all n-point functions scale simply: ⇒ Only divergent terms appear ! Adding the (non-local) boundary counter term, all correlation functions become trivial !

Holographic Entanglement Entropy (HEE) Though this result seems at first confusing, actually it is consistent with the holographic entanglement entropy. It is easy to confirm that the HEE follows the volume law rather than the standard area law ! A B θ

This unusual volume law implies that the subsystem A gets maximally entangled with B when A is infinitesimally small. Therefore, we have the trivial correlation functions: At the same time, the volume law argues that the holographic dual of flat space is given by a highly non-local theory.

Calculations of EE in Non-local Field Theory we can calculate EE for θ=π as follows: In the end we find, Thus the volume law corresponds to the non-local action q=1/2 i.e. [Note: a bit similar to open string field theory]

Possible Relation to Schwarzschild BH Entropy This can be comparable to the Schwarzschild BH entropy: This suggests that the BH entropy may be interpreted as the entanglement entropy…

⑤ Conclusions We raised a puzzle on the entropy in the thermalization in AdS/CFT and resolved by showing the total von-Neumann entropy is always vanishing in spite that the AdS includes BHs at late time. We present a toy model of holographic dual of BH formations and evaporations using quantum quenches. We discussed a consistent picture of holography for flat space and argued that the dual theory is should be non-local and is highly entangled. Future problems: possible holography for de Sitter spaces and cosmological backgrounds