An Approach to Testing Dark Energy by Observations Collaborators : Chien-Wen Chen Phys, NTU Pisin Chen LeCosPA, NTU Je-An Gu 顧哲安 臺灣大學梁次震宇宙學與粒子天文物理學研究中心.

Slides:



Advertisements
Similar presentations
1 1 Dissecting Dark Energy Eric Linder Lawrence Berkeley National Laboratory.
Advertisements

Current Observational Constraints on Dark Energy Chicago, December 2001 Wendy Freedman Carnegie Observatories, Pasadena CA.
Testing CPT with CMB 李明哲 University of Bielefeld 2008 年 4 月 28 日.
P ROBING SIGNATURES OF MODIFIED GRAVITY MODELS OF DARK ENERGY Shinji Tsujikawa (Tokyo University of Science)
Yashar Akrami Modern Cosmology: Early Universe, CMB and LSS/ Benasque/ August 17, 2012 Postdoctoral Fellow Institute of Theoretical Astrophysics University.
Observational Constraints on Sudden Future Singularity Models Hoda Ghodsi – Supervisor: Dr Martin Hendry Glasgow University, UK Grassmannian Conference.
What Figure of Merit Should We Use to Evaluate Dark Energy Projects? Yun Wang Yun Wang STScI Dark Energy Symposium STScI Dark Energy Symposium May 6, 2008.
University of Texas at San Antonio Arthur Lue Dark Energy or Modified Gravity?
L. Perivolaropoulos Department of Physics University of Ioannina Open page.
Quintessence and the Accelerating Universe
Álvaro de la Cruz-Dombriz Theoretical Physics Department Complutense University of Madrid in collaboration with Antonio L. Maroto & Antonio Dobado Different.
Dark Energy and Void Evolution Dark Energy and Void Evolution Enikő Regős Enikő Regős.
Lecture 2: Observational constraints on dark energy Shinji Tsujikawa (Tokyo University of Science)
José Beltrán and A. L. Maroto Dpto. Física teórica I, Universidad Complutense de Madrid XXXI Reunión Bienal de Física Granada, 11 de Septiembre de 2007.
Physical Constraints on Gauss-Bonnet Dark Energy Cosmologies Ishwaree Neupane University of Canterbury, NZ University of Canterbury, NZ DARK 2007, Sydney.
1 On Generalized Chaplygin Gas Yungui Gong 龚云贵 重庆邮电学院 超弦 / 理论、粒子物理及宇宙学专题研讨会 10 月 21 日 -11 月 3 日 10/23/2004.
Falsifying Paradigms for Cosmic Acceleration Michael Mortonson Kavli Institute for Cosmological Physics University of Chicago January 22, 2009.
COSMO 2006, Lake Tahoe 9/28/2006 Cuscuton Cosmology: Cuscuton Cosmology: Dark Energy meets Modified Gravity Niayesh Afshordi Institute for Theory and Computation.
Bright High z SnIa: A Challenge for LCDM? Arman Shafieloo Particle Physics Seminar, 17 th February 09 Oxford Theoretical Physics Based on arXiv:
1 L. Perivolaropoulos Department of Physics University of Ioannina Open page
Lecture 1: Basics of dark energy Shinji Tsujikawa (Tokyo University of Science) ``Welcome to the dark side of the world.”
L. Perivolaropoulos Department of Physics University of Ioannina Open page.
Chaplygin gas in decelerating DGP gravity Matts Roos University of Helsinki Department of Physics and and Department of Astronomy 43rd Rencontres de Moriond,
Large distance modification of gravity and dark energy
Dark Energy and Modified Gravity IGC Penn State May 2008 Roy Maartens ICG Portsmouth R Caldwell.
Modified (dark) gravity Roy Maartens, Portsmouth or Dark Gravity?
Relic Neutrinos as a Source of Dark Energy Neal Weiner New York University IDM04 R.Fardon, D.B.Kaplan, A.E.Nelson, NW What does dark energy have to do.
Dark Matter and Dark Energy from the solution of the strong CP problem Roberto Mainini, L. Colombo & S.A. Bonometto Universita’ di Milano Bicocca Mainini.
Dark energy I : Observational constraints Shinji Tsujikawa (Tokyo University of Science)
Dark energy: the greatest mystery of the universe Syksy Räsänen Department of Physics and Helsinki Institute of Physics Arkadia.
有效场论、全息原理 暴胀宇宙与暗能量. Effective Field Theory & Holographic Principle An effective field theory that can saturate the equation necessarily includes many.
Dark Energy and Modified Gravity Shinji Tsujikawa (Gunma National College of Technology ) Collaborations with L. Amendola, S. Capozziello, R. Gannouji,
1 1 Eric Linder University of California, Berkeley Lawrence Berkeley National Lab Interpreting Dark Energy JDEM constraints.
1 Cosmological Constant as a Manifestation of the Hierarchy Pisin Chen Leung Center for Cosmology and Particle Astrophysics National Taiwan University.
Supernova cosmology The quest to measure the equation of state of dark energy Bruno Leibundgut European Southern Observatory.
Dark Energy Expanding Universe Accelerating Universe Dark Energy Scott Dodelson March 7, 2004.
Constraining the Lattice Fluid Dark Energy from SNe Ia, BAO and OHD 报告人: 段效贤 中国科学院国家天文台 2012 年两岸粒子物理与宇宙学研讨会.
中国科技大学交叉中心 吴普训 宁波大学理学院 Distance duality relation and cosmic opacity Collaborators: Zhengxiang Li, Jun Chen, Hongwei Yu Li, Wu and Yu, APJL.
Dark energy from various approaches Archan S. Majumdar S. N. Bose National Centre for Basic Sciences BSM, Quy nhon, vietnam.
1 1 The Darkness of the Universe: The Darkness of the Universe: The Heart of Darkness Eric Linder Lawrence Berkeley National Laboratory.
Bin Wang Fudan University Shanghai Signature on the interaction between dark energy and dark matter.
Cosmic Inhomogeneities and Accelerating Expansion Ho Le Tuan Anh National University of Singapore PAQFT Nov 2008.
Cosmic Acceleration from the basics to the frontiers Je-An Gu ( 顧哲安 ) National Center for Theoretical Sciences (NCTS) Academia Sinica.
2010/09/27 Tokyo Univ. f(R) Modified Gravity Cosmological & Solar-System Tests Je-An Gu 顧哲安 臺灣大學梁次震宇宙學與粒子天文物理學研究中心 Leung Center for Cosmology.
Accelerating Expansion from Inhomogeneities ? Je-An Gu ( 顧哲安 ) National Taiwan University IoPAS 2006/03/17 Collaborators: Chia-Hsun Chuang ( 莊家勛 ) W-Y.
Extending the cosmic ladder to z~7 and beyond: using SNIa to calibrate GRB standard candels Speaker: Speaker: Shuang-Nan Zhang Collaborators: Nan Liang,
Astro-2: History of the Universe Lecture 10; May
ERE 2008September 15-19, Spanish Relativity Meeting 2008, Salamanca, September (2008) Avoiding the DARK ENERGY coincidence problem with a COSMIC.
1 1 Dark Energy with SNAP and other Next Generation Probes Eric Linder Berkeley Lab.
Dark Energy Phenomenology: Quintessence Potential Reconstruction Je-An Gu 顧哲安 National Center for Theoretical Sciences NTHU Collaborators.
Dark Energy Phenomenology: Quintessence Potential Reconstruction Je-An Gu 顧哲安 National Center for Theoretical Sciences CYCU Collaborators.
Quintessence Dark Energy & Acceleration of the Universe B URIN G UMJUDPAI The Tah Poe Academia Institute for Theoretical Physics & Cosmology Department.
宇宙微波背景辐射与 CPT 破坏 李明哲 南京大学物理学院 南大 - 紫台 粒子 - 核 - 宇宙学联合研究中心 南昌 中国高能物理学会.
Unified Dark Matter Models Daniele Bertacca Dipartimento di Fisica “Galileo Galilei”, Via Marzolo 8, Padova, Italy
Dark Energy: Hopes and Expectations Mario Livio Space Telescope Science Institute Mario Livio Space Telescope Science Institute.
In Dynamic Dark Energy Models. 1. Accelerating expansion & interpretation 2. What is Dynamic dark energy model 3. recent observational results.
The HORIZON Quintessential Simulations A.Füzfa 1,2, J.-M. Alimi 2, V. Boucher 3, F. Roy 2 1 Chargé de recherches F.N.R.S., University of Namur, Belgium.
Is Cosmic Acceleration Slowing Down? Invisible Universe-UNESCO-Paris 29 th June-3 rd July 2009 Arman Shafieloo Theoretical Physics, University of Oxford.
Dark Energy Phenomenology  a new parametrization  Je-An Gu 顧哲安 臺灣大學梁次震宇宙學與粒子天文物理學研究中心 Leung Center for Cosmology and Particle Astrophysics (LeCosPA),
The Mystery of Dark Energy Prof Shaun Cole ICC, Durham Photo: Malcolm Crowthers Ogden at 5.
Observational constraint on the varying speed of light theory Speaker: Qi Jing-Zhao Advisor: Prof. Liu Wen-Biao Department of Physics, Beijing Normal University.
Backreaction The effect of clumpiness in cosmology
Observational Constraints on the Running Vacuum Model
Probing the Coupling between Dark Components of the Universe
Recent status of dark energy and beyond
Cosmology with Supernovae
Alcaniz, Chen, Gong , Yu , Zhang
Shintaro Nakamura (Tokyo University of Science)
Dark energy from primordial inflationary quantum fluctuations.
Entropic Gravity Miao Li 中国科学院理论物理研究所
Presentation transcript:

An Approach to Testing Dark Energy by Observations Collaborators : Chien-Wen Chen Phys, NTU Pisin Chen LeCosPA, NTU Je-An Gu 顧哲安 臺灣大學梁次震宇宙學與粒子天文物理學研究中心 Leung Center for Cosmology and Particle Astrophysics (LeCosPA), NTU CosPA 2009, Melbourne

An Approach to Testing Dark Energy by Observations Collaborators : Chien-Wen Chen Phys, NTU Pisin Chen LeCosPA, NTU Je-An Gu 顧哲安 臺灣大學梁次震宇宙學與粒子天文物理學研究中心 Leung Center for Cosmology and Particle Astrophysics (LeCosPA), NTU CosPA 2009, Melbourne

References  Je-An Gu, Chien-Wen Chen, and Pisin Chen, “A new approach to testing dark energy models by observations,” New Journal of Physics 11 (2009) [arXiv: ].  Chien-Wen Chen, Je-An Gu, and Pisin Chen, “Consistency test of dark energy models,” Modern Physics Letters A 24 (2009) 1649 [arXiv: ].

Concordance:   = 0.73,  M = 0.27 Accelerating Expansion (homogeneous & isotropic) Based on FLRW Cosmology Dark Energy Observations (which are driving Modern Cosmology)

(Non-FLRW) Models : Dark Geometry vs. Dark Energy Einstein Equations Geometry Matter/Energy Dark Geometry ↑ Dark Matter / Energy ↑ G μν = 8πG N T μν Modification of Gravity Averaging Einstein Equations Extra Dimensions for an inhomogeneous universe  (from vacuum energy) Quintessence/Phantom (based on FLRW)

M 1 (O) M 2 (O) M 3 (X) M 4 (X) M 5 (O) M 6 (O) : Observations Data Data Analysis Models Theories mapping out the evolution history (e.g. SNe Ia, BAO) (e.g.  2 fitting) Data :::::: Reality : Many models survive

An Approach to Testing Dark Energy Models via Characteristic Q(z) Gu, C.-W. Chen and P. Chen, New J. Phys. [arXiv: ] C.-W. Chen, Gu and P. Chen, Mod. Phys. Lett. A [arXiv: ]

Characteristic Q(z) 1.Q(z) is time-varying (i.e. dependent on z) in general. 2.Q(z) is constant within the model M (under consideration). 3.Q(z) plays the role of a key parameter within Model M. 4.Q(z) is a functional of the parametrized physical quantity P(z). 5.Q(z) can be reconstructed from data via the constraint on P(z). 6.dQ(z)/dz can also be reconstructed from data. 7.The (in)compatibility of the observational constraint of M  dQ(z)/dz and the theoretical prediction of dQ(z)/dz : “0” tells the (in)consistency between data and Model M. For each model, introduce a characteristic Q(z) with the following features: Gu, CW Chen & P Chen arXiv: E.g.,  CDM  DE (z): energy density w DE (z) = w 0 + w a z/(1+z) Along a similar line of thought, focusing on  CDM :  Sahni, Shafieloo and Starobinsky, PRD [ ]:  Zunckel and Clarkson 2008, PRL101 [ ]:

Q1(z)Q2(z)Q3(z):Qi(z):::Q1(z)Q2(z)Q3(z):Qi(z)::: M1M2M3:Mi:::M1M2M3:Mi::: Model (parametrization) Data P(z)P(z) Constraints on Parameters Test the Consistency between Models and Data Gu, CW Chen and P Chen, 2008 Characteristic Q Q i [ P(z),z ] in

Measure of Consistency M M1M2M3:Mi:::M1M2M3:Mi::: Model (parametrization) Data P(z)P(z) Constraints on Parameters Test the Consistency between Models and Data Gu, CW Chen and P Chen, 2008 M i  dQ i (z)/dz :::::: : reconstruct observational constraint : :::::: theoretical prediction: 0  consistent inconsistent Q1(z)Q2(z)Q3(z):Qi(z):::Q1(z)Q2(z)Q3(z):Qi(z)::: M1(z)M2(z)M3(z):Mi(z):::M1(z)M2(z)M3(z):Mi(z)::: in

Q1(z)Q2(z)Q3(z):Qi(z):::Q1(z)Q2(z)Q3(z):Qi(z)::: M1(z)M2(z)M3(z):Mi(z):::M1(z)M2(z)M3(z):Mi(z)::: Measure of Consistency M M1M2M3:Mi:::M1M2M3:Mi::: Model (parametrization) Data P(z)P(z) Constraints on Parameters Test the Consistency between Models and Data Gu, CW Chen and P Chen, 2008 M i  dQ i (z)/dz :::::: : reconstruct observational constraint : :::::: theoretical prediction: 0  consistent inconsistent SN Ia (Constitution) CMB (WMAP 5) BAO (SDSS,2dFGRS) in parameters: {  m,w 0,w a } Linder, 2003 Chevallier&Polarski, 2001

Q1(z)Q2(z)Q3(z):Qi(z):::Q1(z)Q2(z)Q3(z):Qi(z)::: M1(z)M2(z)M3(z)M4(z)M5(z):::M1(z)M2(z)M3(z)M4(z)M5(z)::: Measure of Consistency M  Q exp Q power Q inv-exp Chaplygin : Model (parametrization) Data P(z)P(z) Constraints on Parameters Test the Consistency between Models and Data M i  dQ i (z)/dz :::::: reconstruct observational constraint :::::: theoretical prediction: 0  consistent inconsistent SN Ia (Constitution) CMB (WMAP 5) BAO (SDSS,2dFGRS) parameters: {  m,w 0,w a } in Linder, 2003 Chevallier&Polarski, 2001 CW Chen, Gu and P Chen, 2009

Characteristics Q(z) of 5 Models   CDM :   = constant  Quintessence, exponential: V(  ) = V 1 exp [  /M 1 ]  Quintessence, power-law: V(  ) = m 4  n  n  Quintessence, inverse-exponential: V(  ) = V 2 exp [ M 2 /  ]  generalized Chaplygin gas: p DE (z) =  A/  DE (z) , A>0,   1 CW Chen, Gu and P Chen, 2009Gu, CW Chen and P Chen, 2008

Testing DE Models: Results

Q1(z)Q2(z)Q3(z):Qi(z):::Q1(z)Q2(z)Q3(z):Qi(z)::: M1(z)M2(z)M3(z)M4(z)M5(z):::M1(z)M2(z)M3(z)M4(z)M5(z)::: Measure of Consistency M  Q exp Q power Q inv-exp Chaplygin : Model (parametrization) Data P(z)P(z) Constraints on Parameters Test the Consistency between Models and Data M i  dQ i (z)/dz :::::: reconstruct observational constraint :::::: theoretical prediction: 0  consistent inconsistent SN Ia (Constitution) CMB (WMAP 5) BAO (SDSS,2dFGRS) Linder, PRL, 2003 parameters: {  m,w 0,w a } in Gu, CW Chen and P Chen, 2008CW Chen, Gu and P Chen, 2009

Q1(z)Q2(z)Q3(z):Qi(z):::Q1(z)Q2(z)Q3(z):Qi(z)::: M1(z)M2(z)M3(z)M4(z)M5(z):::M1(z)M2(z)M3(z)M4(z)M5(z)::: Measure of Consistency M  Q exp Q power Q inv-exp Chaplygin : Model (parametrization) Data P(z)P(z) Constraints on Parameters Test the Consistency between Models and Data M i  dQ i (z)/dz :::::: reconstruct observational constraint :::::: theoretical prediction: 0  consistent inconsistent SN Ia (Constitution) CMB (WMAP 5) BAO (SDSS,2dFGRS) CW Chen, Gu and P Chen, 2009 in parameters: {  m,w 0,w a } Linder, 2003 Chevallier&Polarski, 2001

 CDM: measure of consistency M   dQ  (z)/dz   CDM :   = constant 95.4% C.L. 68.3% C.L. consistent CW Chen, Gu and P Chen, 2009

Quintessence: Exponential potential  Quintessence, exponential: V(  ) = V 1 exp [  /M 1 ] 95.4% C.L. 68.3% C.L. inconsistent CW Chen, Gu and P Chen, 2009

Quintessence: Power-law potential  Quintessence, power-law: V(  ) = m 4  n  n 95.4% C.L. 68.3% C.L. consistent CW Chen, Gu and P Chen, 2009

Quintessence: Inverse-exponential potential  Quintessence, inverse-exponential: V(  ) = V 2 exp [ M 2 /  ] 95.4% C.L. 68.3% C.L. consistent CW Chen, Gu and P Chen, 2009

Generalized Chaplygin Gas  generalized Chaplygin gas: p DE (z) =  A/  DE (z) , A>0,   % C.L. 68.3% C.L. consistent CW Chen, Gu and P Chen, 2009

Measure of Consistency for 5 DE Models CW Chen, Gu and P Chen, 2009

Discriminative Power between Dark Energy Models

Distinguish …  Quintessence, exponential: V(  ) = V 1 exp [  /M 1 ]  Quintessence, power-law: V(  ) = m 4  n  n Gu, CW Chen and P Chen, 2009 from M5M6M7M8 M3M1M2M4 (8 models)

M1(z)M2(z)M3(z)M1(z)M2(z)M3(z)  Q exp Q power (parametrization) Data P(z)P(z) Constraints on Parameters Procedures reconstruct 2023 SNe (SNAP quality) CMB (WMAP5 quality) BAO (current quality) Gu, CW Chen and P Chen, 2009 Fiducial Models M1,…,M8 simulation in observational constraint theoretical prediction: 0  indistinguishable distinguishable Model Measure of Consistency M M i  dQ i (z)/dz parameters: {  m,w 0,w a } Linder, 2003 Chevallier&Polarski, 2001

Distinguish from 8 models (M1–M8) Gu, CW Chen and P Chen, 2009 Exp. potential Power-law … exp. power- law exp. power- law more slowly evolving w DE (z)faster evolving w DE (z) OOOO OO OO OO OO XX XX

Summary

 We proposed an approach to the testing of dark energy models by observational results via a characteristic Q(z) for each model.  We performed the consistency test of 5 dark energy models:  CDM, generalized Chaplygin gas, and 3 quintessence with exponential, power-law, and inverse-exponential potentials.  The exponential potential is ruled out at 95.4% C.L. while the other 4 models are consistent with current data.  With the future observations and via our approach: – Exponential potential: distinguishable from the 8 models (under consideration). – Power-law potential: distinguishable from the models with faster evolving w(z) [M3,M4,M7,M8] ; but NOT from those with more slowly evolving w(z) [M1,M2,M5,M6]. Summary and Discussions

 The consistency test is to examine whether the condition necessary for a model is excluded by observations.  Our approach to the consistency test is simple and efficient because:  For all models, Q(z) and dQ/dz are reconstructed from data via the observational constraints on a single parameter space that by choice can be easily accessed.  By our design of Q(z), the consistency test can be performed without the knowledge of the other parameters of the models.  Generally speaking, an approach invoking parametrization may be accompanied by a bias against certain models. This issue requires further investigation. Summary and Discussions (cont.)

 This approach can be applied to other DE models and other explanations of the cosmic acceleration.  The general principle of this approach may be applied to other cosmological models and even those in other fields beyond the scope of cosmology. Summary and Discussions (cont.)

Thank you.