Supersymmetry Breaking, lecture 3 Ken Intriligator, UCSD Asian Pacific Winter School 2007 Based on lecture notes prepared with Nathan Seiberg.

Slides:



Advertisements
Similar presentations
1. 2 SUPERSYMMETRY Most popular solution to the hierarchy problem. Symmetry between fermions, and bosons With same mass and quantum number 3.
Advertisements

What do we know about the Standard Model? Sally Dawson Lecture 4 TASI, 2006.
Summing planar diagrams
TeV scale see-saws from higher than d=5 effective operators Neutrino masses and Lepton flavor violation at the LHC Würzburg, Germany November 25, 2009.
Sebastián Franco Based on: F. Benini, A. Dymarsky, S. Franco, S. Kachru, D. Simic and H.Verlinde (to appear) KITP Santa Barbara SILAFAE January
VACUUM STRUCTURE OF N HIGGS DOUBLET MODELS Pedro Ferreira ISEL and CFTC, Universidade de Lisboa PASC Winter School, December 20 th, 2007.
Memorial Conference in Honor of Julius Wess. Topics in Gauge Mediation Nathan Seiberg IAS Based on: Meade, NS and Shih, arXiv: NS, Volansky and.
SUSY breaking, R-symmetry breaking, and Metastable Vacua Ken Intriligator, UCSD UCI SCSS, May 5, 2007 Based on works with Nathan Seiberg, and David Shih.
1 Chiral Symmetry Breaking and Restoration in QCD Da Huang Institute of Theoretical Physics, Chinese Academy of
Gauge/gravity duality and meta-stable SUSY breaking Sebastián Franco Princeton University Based on:hep-th/ : Argurio, Bertolini, Franco and Kachru.
1 MBG-60 Happy birthday, Michael!. 2 Degania, Israel (1910)
Happy 120 th birthday. Mimeograph Constraining Goldstinos with Constrained Superfields Nathan Seiberg IAS Confronting Challenges in Theoretical Physics.
Richard Howl The Minimal Exceptional Supersymmetric Standard Model University of Southampton UK BSM 2007.
Supersymmetry and Gauge Symmetry Breaking from Intersecting Branes A. Giveon, D.K. hep-th/
V (  )  ½    2 + ¼  4 A translation  (x) =  0 + u(x) → u(x) ≡  (x) –  0 V (  )  V (u +   )  ½   (u +   ) 2 + ¼ (u +   ) 4 selects.
Meta-stable Vacua in SQCD and MQCD David Shih Harvard University K. Intriligator, N. Seiberg and DS hep-th/ I. Bena, E. Gorbatov, S. Hellerman,
Masses For Gauge Bosons. A few basics on Lagrangians Euler-Lagrange equation then give you the equations of motion:
THE GRACEFUL EXIT FROM INFLATION AND DARK ENERGY By Tomislav Prokopec Publications: Tomas Janssen and T. Prokopec, arXiv: ; Tomas Janssen, Shun-Pei.
M ultiverse and the Naturalness Problem Hikaru KAWAI 2012/ 12/ 4 at Osaka University.
Cosmological Vacuum Selection and Meta-Stable Susy Breaking Ioannis Dalianis IFT-University of Warsaw.
What do we know about the Standard Model? Sally Dawson Lecture 2 SLAC Summer Institute.
SUSY Breaking by Meta-stable States Chia-Hung Vincent ChangNTNU Based on a work with Kuo-Hsing Tsao now at UIC NTU theory seminar Dec 2010.
Higher Derivative Scalars in Supergravity Jean-Luc Lehners Max Planck Institute for Gravitational Physics Albert Einstein Institute Based on work with.
Open Landscape David Mateos University of California at Santa Barbara (work with Jaume Gomis and Fernando Marchesano)
2. Two Higgs Doublets Model
Wednesday, Apr. 23, 2003PHYS 5326, Spring 2003 Jae Yu 1 PHYS 5326 – Lecture #24 Wednesday, Apr. 23, 2003 Dr. Jae Yu Issues with SM picture Introduction.
D-term Dynamical Supersymmetry Breaking K. Fujiwara and, H.I. and M. Sakaguchi arXiv: hep-th/ , P. T. P. 113 arXiv: hep-th/ , N. P. B 723 H.
B EING F LAT W ITH N O S YMMETRIES arXiv: [hep-th] arXiv:15xx.xxxxx [hep-th] with Xi Dong and Daniel Z. Freedman Yue Zhao SITP, Stanford University.
SUSY breaking by metastable states Chia-Hung Vincent ChangNTNU Based on a work with Kuo-Hsing Tsao at NTNU CYCU HEP and QIS joint seminar Dec 2009.
Dark Energy, the Electroweak Vacua, and Collider Phenomenology Eric Greenwood, Evan Halstead, Robert Poltis, and Dejan Stojkovic arXiv: [hep-ph]
The false vacuum bubble : - formation and evolution - in collaboration with Chul H. Lee(Hanyang), Wonwoo Lee, Siyong Nam, and Chanyong Park (CQUeST) Based.
1 THEORETICAL PREDICTIONS FOR COLLIDER SEARCHES “Big” and “little” hierarchy problems Supersymmetry Little Higgs Extra dimensions G.F. Giudice CERN.
Yuji Omura (Kyoto Univ.) Hiroyuki Abe (YITP,Kyoto Univ.) Tatsuo Kobayashi(Kyoto Univ.)
Meta-stable Supersymmetry Breaking in Spontaneously Broken N=2 SQCD Shin Sasaki (Univ. of Helsinki) [hep-th/ (M.Arai, C.Montonen, N.Okada and.
Phase transitions in Hubbard Model. Anti-ferromagnetic and superconducting order in the Hubbard model A functional renormalization group study T.Baier,
Scale invariance and the electroweak symmetry breaking Archil Kobakhidze with R. Foot, K.L. McDonald and R. R. Volkas: Phys. Lett. B655 (2007) Phys.
A MANIFESTLY LOCAL T HEORY OF V ACUUM E NERGY S EQUESTERING George Zahariade UC Davis.
Meta-stable Supersymmetry Breaking in an N=1 Perturbed Seiberg-Witten Theory Shin Sasaki (Univ. of Helsinki, Helsinki Inst. of Physics) Phys. Rev. D76.
H. Quarks – “the building blocks of the Universe” The number of quarks increased with discoveries of new particles and have reached 6 For unknown reasons.
Two-dimensional SYM theory with fundamental mass and Chern-Simons terms * Uwe Trittmann Otterbein College OSAPS Spring Meeting at ONU, Ada April 25, 2009.
Nobuchika Okada The University of Alabama Miami 2015, Fort Lauderdale, Dec , GeV Higgs Boson mass from 5D gauge-Higgs unification In collaboration.
1 Dynamical SUSY Breaking in Meta-Stable Vacua Ken Intriligator, UCSD & IAS SUSY 2006, 6/14/2006 KI, Nathan Seiberg, and David Shih hep-th/
Monday, Apr. 7, 2003PHYS 5326, Spring 2003 Jae Yu 1 PHYS 5326 – Lecture #20 Monday, Apr. 7, 2003 Dr. Jae Yu Super Symmetry Breaking MSSM Higgs and Their.
The Importance of the TeV Scale Sally Dawson Lecture 3 FNAL LHC Workshop, 2006.
One-loop inert and pseudo-inert minima Pedro Ferreira ISEL and CFTC, UL, Portugal Toyama, 14/02/2015 Preliminary results, with Bogumila Swiezewska, Univerity.
Seiberg Duality James Barnard University of Durham.
SUSY breaking by metastable states Chia-Hung Vincent ChangNTNU Based on a work with Kuo-Hsing Tsao at NTNU.
Introduction to Flavor Physics in and beyond the Standard Model Enrico Lunghi References: The BaBar physics book,
Lecture 7. Tuesday… Superfield content of the MSSM Gauge group is that of SM: StrongWeakhypercharge Vector superfields of the MSSM.
Dirac Gauginos, Negative Supertraces and Gauge Mediation hep-th Linda Carpenter CERN 2011.
SUSY Breaking by Meta-stable States Chia-Hung Vincent ChangNTNU Based on a work with Kuo-Hsing Tsao now at UIC NTNU theory seminar Dec 2016.
Gravity effects to the Vacuum Bubbles Based on PRD74, (2006), PRD75, (2007), PRD77, (2008), arXiv: [hep-th] & works in preparation.
Hunting for Hierarchies in PSL 2 (7) MICHAEL JAY PEREZ PHENOMENOLOGY 2015 MAY 5, 2015 ARXIV : /
Dynamical SUSY Breaking and Meta-Stable Vacua Ken Intriligator, UCSD Annual Theory Meeting, Durham, Dec 19, 2006 Based on work with Nathan Seiberg, and.
Metastable supersymmetry breaking vacua from conformal dynamics
A Scheme for Metastable Supersymmetry Breaking
Spontaneous Symmetry Breaking and the
Supersymmetry Breaking Vacua in Geometrically Realized Gauge Theories
Ariel Edery Bishop’s University
NGB and their parameters
Metastable Supersymmetry Breaking
The Flavor of the Composite Twin Higgs
Magnetic supersymmetry breaking
PHYS 5326 – Lecture #19 Wrapping up the Higgs Mechanism
Lecture 11 Spontaneous Symmetry Breaking
SUSY breaking by metastable state
Spontaneous breakdown (SB) of symmetry
grand gauge-Higgs unification
Quantum gravity predictions for particle physics and cosmology
Presentation transcript:

Supersymmetry Breaking, lecture 3 Ken Intriligator, UCSD Asian Pacific Winter School 2007 Based on lecture notes prepared with Nathan Seiberg

Classical pseudomoduli Theories which break susy at tree-level generally have pseudomoduli. E.g. Goldstino partners. V fields Ms4Ms4 classical pseudomoduli space of susy breaking vacua Physically inequivalent, non-susy vacua!

Vacua inequivalent E.g. O'R model. Pseudomodulus X, classically massless. Mass spectrum of the other massive fields depends on the expectation value of X: (Eigenvalues of m 2 matrices) Vacua with different X are physically inequivalent. Quantum effects will lift the classical degeneracy.

Pseudomoduli lifted by QM One loop effective potential for pseudomodulus X. Massive scalars and fermions running in loop. Sum over all insertions of X vev. Compute using classical mass spectrum of fields in the loop.

Pseudomoduli lifted by QM Coleman- Weinberg potential. comments: non-susy theories also have quartic and quadratic divergent terms; vanish in susy theories:, log divergent term can be absorbed into renormalization of It's X independent.

Pseudomodulus lifting in O'R. Compute via Just plug in these classical eigenvalues, to get full potential. It lifts the X degeneracy.

Pseudomodulus lifting in O'R. V Ms4Ms4 X Quantum vacuum at origin, X=0. This is where U(1) R is unbroken.

Quantum vacuum of O'R. Vacuum at X=0 is stable. Breaks SUSY. Find: expand around min. Can compute. E.g.

Quantum O'R vacuum energy Absorb into renormalization of tree-level term:

O'R pseudomodulus mass

CW potential vs susy effective V If susy splittings are small, can also compute V eff in susy effective field theory. E.g. Integrate out massive fields, with E.g. O'R:

CW potential vs susy effective V E.g. O'R Get This way of computing the low-energy effective action only gives up to order |F| 2 vs. the CW V, which generally gets terms at all orders in F. The CW potential is correct. The SUSY effective V method is only valid if higher order F terms are negligible. E.g. in O'R it only reproduces potential for small y, and just leading order in y.

Effective V far from origin Far from the origin of pseudo-moduli space, CW potential gives approximately same V as the SUSY effective action: for Rises at large X, if X has positive anomalous dim. Yukawa coupling of X leads to positive anom. dim. No runaways: pseudomoduli V rises for large X (unless it is charged under some gauge interactions)

Modified O'R model Recall susy vacua, for pseudo-mod, X, large: Indeed, we should re-compute the mass matrices on the pseudo-moduli space, including the correction. Find tachyonic direction for large X. But for small X, the other fields have non-tachyonic masses and can again be integrated out, via V CW....

Meta-stable susy breaking in modified O'R model X Tachyonic direction to susy vacs. Meta-stable state long lived for

Recall how false vacua decay By tunnelling, can nucleate a bubble of true vacuum. Like boiling. Bubble expands only if it is big enough (energetically favorable volume effect vs unfavorable surface effect). False vacuum true vac shrinks expands

False vacua decay, cont. Decay probability ( Langer,Coleman) The "bounce action" is the Euclidean action of the tunneling trajectory. Turn potential upside down, and compute the classical action of the field config. with b.c.'s of tunneling trajectory. Large action, so long-lived metastable vac, if the barrier is high and/or wide relative to difference in vacuum energy in false vs true vacua. E.g. if barrier is low, then Our example:,.

Rank condition susy breaking example V (1) CW lifts the pseudo-moduli space. Up to symmetry transformations, the vacua are at No tachyonic directions: all lifted pseudo-moduli get non-tachyonic masses from the 1-loop V. There are also massless goldstone bosons, and also massless fermions (incl. goldstino).

Rank cond. space of vacua Actually a compact moduli space of vacua, the Goldstone boson manifold G/H. (Nontrivial topology. Admits skyrmion topological solitions.) Goldstone bosons stay massless. Can't become tachyonic directions. All other pseudomoduli get non-zero, non-tachyonic masses from 1-loop V. So we have found true local minima of V. Breaks global symms:

Relation to R-symmetry Nelson, Seiberg Consider condition for broken supersymmetry, no solution to: This is k conditions on k fields. For generic function W, there would be a solution. Non-R flavor symms do not help, e.g. non-R global U(1) symmetry: Now get k-1 equations for k-1 variables, again generically there would be a solution...

Relation to R-symmetry cont. An R-symmetry does help: Now is over-constrained: k equations for k-1 variables. So for generic function W, no solution. Conclude, for generic superpot'ls compatible with symmetries, theories without R-symmetries do not break SUSY, theories with U(1) R-symmetries do. Recall..

Our examples R-symmetry and broken SUSY. No R-symm and unbroken SUSY. Can have meta-stable SUSY breaking, even if from approximate R-symmetry. Can break R-symmetry. Can still have susy-breaking with as W is then non-generic.

Our examples, cont. Has an R-symmetry, But SUSY is still unbroken. Shows having an R-symmetry does not guarantee broken SUSY. R-symmetry and broken SUSY. No R-symmetry, and unbroken SUSY. Metastable susy breaking vacuum, with approximate R-symmetry.