Trojan-horse attacks on practical continuous-variable quantum key distribution systems Imran Khan, Nitin Jain, Birgit Stiller, Paul Jouguet, Sébastien.

Slides:



Advertisements
Similar presentations
Quantum Cryptography Post Tenebras Lux!
Advertisements

Experimental Demonstration of Polarization Encoding Measurement-Device-Independent Quantum Key Distribution arXiv: Zhiyuan Tang, Zhongfa Liao,
Quantum Cryptography Cryptography Quantum Key Distribution.
Implementation of Practically Secure Quantum Bit Commitment Protocol Ariel Danan School of Physics Tel Aviv University September 2008.
Chapter 2 Fundamentals of Data and Signals
Experimental demonstration of the coexistence of continuous-variable quantum key distribution with an intense DWDM classical channel Rupesh Kumar Joint.
Ilja Gerhardt QUANTUM OPTICS CQT GROUP Ilja Gerhardt, Matthew P. Peloso, Caleb Ho, Antía Lamas-Linares and Christian Kurtsiefer Entanglement-based Free.
Space-time positioning at the quantum limit with optical frequency combs Workshop OHP September 2013 Valérian THIEL, Pu JIAN, Jonathan ROSLUND, Roman SCHMEISSNER,
Physical Layer CHAPTER 3. Announcements and Outline Announcements Credit Suisse – Tomorrow (9/9) Afternoon – Student Lounge 5:30 PM Information Session.
Outline Transmitters (Chapters 3 and 4, Source Coding and Modulation) (week 1 and 2) Receivers (Chapter 5) (week 3 and 4) Received Signal Synchronization.
Quantum Cryptography Ranveer Raaj Joyseeree & Andreas Fognini Alice Bob Eve.
Economic Stimulus : Valorization of Single Photon Detectors and Quantum Key Distribution Systems Hugo Zbinden Group of Applied Physics (GAP), UNIGE NCCR.
Displaced-photon counting for coherent optical communication Shuro Izumi.
Coherent Lightwave Systems
Digital Data Transmission ECE 457 Spring Information Representation Communication systems convert information into a form suitable for transmission.
The Promise of Quantum Information. SPS Detector X Detector Y Path A Path B Paths A & B going toward Y destructively interfere: Y never fires Quantum.
Universal Optical Operations in Quantum Information Processing Wei-Min Zhang ( Physics Dept, NCKU )
Fiber-Optic Communications James N. Downing. Chapter 10 Fiber-Optic Test and Measurement.
Quantum Key Distribution Yet another method of generating a key.
Niels Bohr Institute Copenhagen University Eugene PolzikLECTURE 5.
Quantum Cryptography Marshall Roth March 9, 2007.
Quantum Key Establishment Wade Trappe. Talk Overview Quantum Demo Quantum Key Establishment.
Simulation of an Optical Fiber Point to Point Communication link using Simulink By Nihal Shastry Uday Madireddy Nitin Ravi.
Quantum Cryptography Prafulla Basavaraja CS 265 – Spring 2005.
Quantum Cryptography December, 3 rd 2007 Philippe LABOUCHERE Annika BEHRENS.
Paraty, Quantum Information School, August 2007 Antonio Acín ICFO-Institut de Ciències Fotòniques (Barcelona) Quantum Cryptography.
1 ISIS-IPHOBAC SUMMER SCHOOL, May 17-18, 2007, Budapest, Hungary "Broadband Architectures and Functions" Photonic microwave signal processing Jianping.
Fundamental of Fiber Optics. Optical Fiber Total Internal Reflection.
Two vertical-cavity surface-emitting lasers (VCSEL’s) are used at Alice, as sources of the two encoded states. Both outputs are then attenuated to achieve.
Gagan Deep Singh GTBIT (IT) August 29,2009.
KM3NeTmeeting Pylos, Greece, April of 12 Mar van der Hoek et al. electronic department PROGRESS ON OPTICAL MODULATORS FOR KM3NeT Mar van der.
MODULATION AIDA ESMAEILIAN 1. MODULATION  Modulation: the process of converting digital data in electronic form to an optical signal that can be transmitted.
Feynman Festival, Olomouc, June 2009 Antonio Acín N. Brunner, N. Gisin, Ll. Masanes, S. Massar, M. Navascués, S. Pironio, V. Scarani Quantum correlations.
Electro-optic effect:
Secure storage of cryptographic keys within random volumetric materials Roarke Horstmeyer 1, Benjamin Judkewitz 1, Ivo Vellekoop 2 and Changhuei Yang 1.
Paraty, Quantum Information School, August 2007 Antonio Acín ICFO-Institut de Ciències Fotòniques (Barcelona) Quantum Cryptography (III)
Purdue University Spring 2014 Prof. Yong P. Chen Lecture 5 (2/3/2014) Slide Introduction to Quantum Optics &
Experimental Characterization of Frequency Dependent Squeezed Light R. Schnabel, S. Chelkowski, H. Vahlbruch, B. Hage, A. Franzen, N. Lastzka, and K. Danzmann.
Security of practical quantum cryptography with heralded single photon sources Mikołaj Lasota 1, Rafał Demkowicz-Dobrzański 2, Konrad Banaszek 2 1 Nicolaus.
April 12, 2006 Berk Akinci 1 Quantum Cryptography Berk Akinci.
Jian-Wei Pan Decoherence-free sub-space and quantum error-rejection Jian-Wei Pan Lecture Note 7.
1 candidate: Vadim Makarov Quantum cryptography and quantum cryptanalysis Defence for the degree doktor ingeniør at the Norwegian University of Science.
Chapter 10 Optical Communication Systems
Device-independent security in quantum key distribution Lluis Masanes ICFO-The Institute of Photonic Sciences arXiv:
Trondheim 2003 NTNU Vadim Makarov Lecture in "Fiberkomponenter" course, November 13, 2003 Quantum Cryptography Kvantekryptering.
1 A Randomized Space-Time Transmission Scheme for Secret-Key Agreement Xiaohua (Edward) Li 1, Mo Chen 1 and E. Paul Ratazzi 2 1 Department of Electrical.
Trondheim 2002 NTNU Quantum Cryptography FoU NTNU Vadim Makarov and Dag R. Hjelme Institutt for fysikalsk elektronikk NTNU Norsk kryptoseminar,
Quantum Key Distribution Chances and Restrictions Norbert Lütkenhaus Emmy Noether Research Group Institut für Theoretische Physik I Universität Erlangen-Nürnberg.
Quantum Cryptography Slides based in part on “A talk on quantum cryptography or how Alice outwits Eve,” by Samuel Lomonaco Jr. and “Quantum Computing”
Marcos Curty 1,2 Coauthors: Tobias Moroder 2,3, and Norbert Lütkenhaus 2,3 1.Center for Quantum Information and Quantum Control (CQIQC), University of.
Opto-mechanics with a 50 ng membrane Henning Kaufer, A. Sawadsky, R. Moghadas Nia, D.Friedrich, T. Westphal, K. Yamamoto and R. Schnabel GWADW 2012,
Chapter 2 Fundamentals of Data and Signals
1 Conference key-agreement and secret sharing through noisy GHZ states Kai Chen and Hoi-Kwong Lo Center for Quantum Information and Quantum Control, Dept.
Quantum Optics II – Cozumel December 2004 Quantum key distribution with polarized coherent states Quantum Optics Group Instituto de Física “Gleb Wataghin”
Quantum Cryptography Antonio Acín
Sources, Memories, Detectors Ryan Camacho, Curtis Broadbent, Michael Pack, Praveen Vudya Setu, Greg Armstrong, Benjamin Dixon and John Howell University.
Quantum Optics VI Krynica Unconditional quantum cloning of coherent states with linear optics Gerd Leuchs, Vincent Josse, Ulrik L. Andersen Institut.
Carmen Porto Supervisor: Prof. Simone Cialdi Co-Supervisor: Prof. Matteo Paris PhD school of Physics.
QUANTUM OPTICS LAB IAP, UNIVERSITÄT BERN Qudit Implementations with Energy-Time Entangled Photons 1 Bänz Bessire Quantum Optics Lab – The Stefanov Group.
Global overview of the Optical Network for KM3Net Phase 1 Sander Mos KM3NeT Collaboration Meeting 30 January 2013 Marseille.
-SECRECY ENSURED TECHNOLOGYKEY DISTRIBUTUION CLASSICAL CRYPTOGRAPHY QUANTAM CRYPTOGRAPHY WORKING INTRODUCTION SECURITY CONCLUSION ADVANTAGESLIMITATIONS.
ENTANGLED BRIGHT SQUEEZED VACUUM
Osamu Hirota Quantum ICT Research Institute Tamagawa University, Tokyo
M. Stobińska1, F. Töppel2, P. Sekatski3,
OptiSystem applications: Digital modulation analysis (FSK)
Methods of transfer of ultra-stable frequencies to radio telescope
Unconditional Security of the Bennett 1992 quantum key-distribution protocol over a lossy and noisy channel Kiyoshi Tamaki * *Perimeter Institute for.
Making Networks Light March 29, 2018 Charleston, South Carolina.
CV Cryptography Using a Bidirectional Quantum Channel
Quantum Information with Continuous Variables
Presentation transcript:

Trojan-horse attacks on practical continuous-variable quantum key distribution systems Imran Khan, Nitin Jain, Birgit Stiller, Paul Jouguet, Sébastien Kunz-Jacques, Eleni Diamanti, Christoph Marquardt and Gerd Leuchs

introduction

Quantum Hacking Theoretical model security proofs for quantum key distribution Theoretical model Some assumptions in security proof may be incorrect or insufficient Implementation Technological deficiencies/imperfections exploit discrepancy of theoretical model vs practical implementation → Eve obtains a portion of the secret key while staying concealed quantum hacking helps strengthen practical QKD

Trojan-horse attack principle Alice Quantum channel Source of back-reflection Bob Laser modulator Receiver Prepares alphabet of non-orthogonal quantum states and sends them to Bob (e.g. two state alphabet) Eve Receiver Laser When to send in the pulse/expect the reflection to return? [Timing] What is the no. of photons per pulse (n) needed? [Brightness/Color] Which property of the back-reflection to measure? [Tomography] How to avoid being discovered by Bob/Alice? [Monitors/QBER] D.S. Bethune and W.P. Risk, IEEE J. Quant. Elec. 36, 3 (2000) A. Vakhitov et al., J. Mod. Opt. 48, 2023 (2001) N. Gisin et al., Phys. Rev. A. 73, 022320 (2006) N. Jain et al., arXiv: 1406.5813, submitted to NJP (2014)

Sources of reflections flat angled Open FC/PC connector Reflectance: -14 dB Open FC/APC connector Reflectance: -45 dB Laser surface Reflectance: -60 dB Closed FC/APC connector Reflectance: -60 dB Electro-optic modulator Reflectance: -45 dB

Eve vs Alice and Bob Eve‘s task: obtain a portion of the secret key while staying concealed What plays against Eve? Detection statistics The deviation of observed detection rate from the expected value in Bob in state measurement was within tolerable limits. QBER The quantum bit error rate (QBER) estimated during the error correction step did not cross the abort threshold of the device. Hardware countermeasures Isolators Optical fuses Wavelength filters Watchdog detectors QBER < threshold N. Jain et al., arXiv: 1408.0492, submitted to JSTQE (2014)

experimental setups and OTDR measurements

Features of both systems Output of the systems binary modulation LO LO Alice Erlangen signal signal H V H V Features of both systems Time-multiplexed Polarization-multiplexed Alice prepares local oscillator pulse and sends it over the channel LO LO Alice SeQureNet signal signal H V H V Gaussian modulation

Erlangen and SeQureNet system C. Bennett, PRL 68, 3121 (1992) C. Wittmann et al., Opt. Express 18, 4499 (2010) F. Grosshans and P. Grangier, PRL 88, 057902 (2002) I. Khan et al., PRA 88, 010302 (2013)

Optical time domain reflectometry open connector OTDR Laser APD noise floor fiber fiber scattering Device under test image source: http://en.wikipedia.org/wiki/Optical_time-domain_reflectometer

OTDR results (SeQureNet)

Possible attack paths (SeQureNet)

Hacking SETUP and measurements

Eve‘s setup Hacking live demo Tuesday: poster session Wednesday: during the breaks

Typical homodyne signal from back-reflections for binary modulation unwanted back-reflections Amplitude discrimination threshold Time

Measurement data: binary modulation Q-function as measured by Eve for the Erlangen system Q-function as measured by Eve for the SeQureNet system 1 1 Discrimination success: >98% Discrimination success: >99%

Measurement data: Gaussian modulation AM voltage Gaussian distribution Alice AM PM PM voltage Uniform distribution Voltage phase space # of occurences # of occurences Voltage Voltage Quadrature phase space Quadrature amplitude Quadrature phase # of occurences # of occurences Eve Homodyne detection amplitude quadrature [a.u.] phase quadrature [a.u.]

Loss analysis VATT = 0 dB VATT = 20 dB Photon number per pulse closed connector and VATT = 30 dB closed connector and VATT = 0 dB open connector and VATT = 20 dB Photon number per pulse Corresponding CW power [W] open connector and VATT = 0 dB Complete roundtrip loss [dB]

Loss analysis ~ 1 W VATT = 0 dB VATT = 20 dB Photon number per pulse closed connector and VATT = 30 dB ~ 1 W closed connector and VATT = 0 dB open connector and VATT = 20 dB Photon number per pulse Corresponding CW power [W] open connector and VATT = 0 dB Complete roundtrip loss [dB] http://www.thorlabs.de/newgrouppage9.cfm?objectgroup_id=1792

Loss analysis Eve could use multiple back-reflections! VATT = 0 dB closed connector and VATT = 30 dB closed connector and VATT = 0 dB Eve could use multiple back-reflections! open connector and VATT = 20 dB Photon number per pulse Corresponding CW power [W] open connector and VATT = 0 dB Complete roundtrip loss [dB] http://www.thorlabs.de/newgrouppage9.cfm?objectgroup_id=1792

Impact on MDI systems Original MDI scheme Proof-of-principle implementation Alice (=Bob) Eve H. K. Lo, M. Curty and B. Qi, PRL 108, 130503 (2012) T. Ferreira da Silva et al., PRA 88, 052303 (2013)

Countermeasures Transmission spectrum for double pass through a) circulator and b) isolator List of countermeasures Isolator Watchdog detector Wavelength filter Optical fuse N. Jain et al., arXiv: 1408.0492, submitted to JSTQE (2014) S. Sajeed et al., ”Securing two-way quantum communication: the monitoring detector and its flaws” A. Bugge et al., PRL 112, 070503 (2014)

The end Thank you for your attention! Max-Planck-Institute for the Science of Light, Erlangen Imran Khan Nitin Jain Dr. Birgit Stiller Dr. Christoph Marquardt Prof. Dr. Gerd Leuchs SeQureNet and Telecom ParisTech Alice Dr. Paul Jouguet Dr. Sébastien Kunz-Jacques Dr. Eleni Diamanti Thank you for your attention!