題目題目 REINFORCEMENT EFFECT EVALUATION FOR THE GEOSYNTHETICE CLAY BANKING NAGASAKI UNIVERSITY K. TSUJI Y.TANABASHI Y.JIANG.

Slides:



Advertisements
Similar presentations
Graduate school of Science and Technology, Nagasaki University
Advertisements

Prediction of The Reinforcement Ground Behavior with The Vacuum Consolidation Method by Triaxial Model Test & FE Analysis H.Kawabata Y.Tanabashi Y.JiangT.Shiono.
SPSSによるHosmer-Lemeshow検定について
あなたは真夜中に 山の頂上を目指す登山者です
知能制御システム 電気電子・情報工学科 (電気電子工学コース)3年 自動制御 物理工学科 (応用物理・量子エネルギーコース)4年
7.n次の行列式   一般的な(n次の)行列式の定義には、数学的な概念がいろいろ必要である。まずそれらを順に見ていく。
9.線形写像.
3.多項式計算アルゴリズム べき乗の計算 多項式の計算.
5.連立一次方程式.
相関.
ノイズ. 雑音とも呼ばれる。(音でなくても、雑 音という) 入力データに含まれる、本来ほしくない 成分.
素数判定法 2011/6/20.
フーリエ係数の性質. どこまで足す? 理想的には無限大であるが、実際に はそれは出来ない これをフーリエ解析してみる.
地球温暖化と 天候の関係性 ~温暖化は天候のせいなのではないのか~. 目的課題 地球温暖化現象 ただの気象条件によるものではないのか? 地球温暖化現象に天候は関係しているの か?
公開鍵暗号系 2011/05/09.
1章 行列と行列式.
本宮市立白岩小学校. 1 はじめに 2 家庭学習プログラム開発の視点 ① 先行学習(予習)を生かした 確かな学力を形成する授業づく り ② 家庭との連携を図った家庭学習の習慣化.
プログラミングⅠ( 1 組) 第 9 回
フーリエ級数. 一般的な波はこのように表せる a,b をフーリエ級数とい う 比率:
3.エントロピーの性質と各種情報量.
9.通信路符号化手法1 (誤り検出と誤り訂正の原理)
1 6.低次の行列式とその応用. 2 行列式とは 行列式とは、正方行列の特徴を表す一つのスカ ラーである。すなわち、行列式は正方行列からスカ ラーに写す写像の一種とみなすこともできる。 正方行列 スカラー(実数) の行列に対する行列式を、 次の行列式という。 行列 の行列式を とも表す。 行列式と行列の記号.
計算のスピードアップ コンピュータでも、sin、cosの計算は大変です 足し算、引き算、掛け算、割り算は早いです
線形符号(10章).
1 0章 数学基礎. 2 ( 定義)集合 集合については、 3セメスタ開講の「離散数学」で詳しく扱う。 集合 大学では、高校より厳密に議論を行う。そのために、議論の 対象を明確にする必要がある。 ある “ もの ” (基本的な対象、概念)の集まりを、 集合という。 集合に含まれる “ もの ” を、集合の要素または元という。
10.PとNP完全問題との境界.
4.プッシュダウンオートマトンと 文脈自由文法の等価性
システムプログラム論 課題 大村 廉. 課題 Java を用いて Producer / Consumer 問題を解決する MyBuffer クラスを –Synchronized キーワード –Semaphore クラス (java.util.concurrent.Semaphore) を用いてそれぞれ作りなさい.
信号測定. 正弦波 多くの場合正弦波は 0V の上下で振動する しかし、これでは AD 変換器に入れら れないので、オフ セットを調整して データを取った.
1 9.線形写像. 2 ここでは、行列の積によって、写像を 定義できることをみていく。 また、行列の積によって定義される写 像の性質を調べていく。
通信路(7章).
アルゴリズムとデータ構造 補足資料 7-4 「単純交換ソート exsort.c 」 横浜国立大学 理工学部 数物・電子情報系学科 富井尚志.
1 情報理論 2008 年度 4 セメスター. 2 履修にあたって 担当 – 草苅 良至(部屋GI511、内線209 5 ) 教科書 平田廣則著「情報理論のエッセンス」 昭晃堂、 \2,700- ・参考書 今井秀樹著「情報理論」 昭晃堂、 \2,900-
6.符号化法(6章).
創成C PROGRAMMING PROJECT 中部大学工学部情報工学科:創成Cインタラクティブデザイン( アプリ名: ZIP 2 GPS 作成者: EP00000 藤吉 弘亘.
三角関数の合成.
平成22年度予算の国立大学法人関連要望事項に係るパブリックコメント説明会
3.正方行列(単位行列、逆行列、対称行列、交代行列)
レイアウトとデザインの基本 情報処理演習2.
論理回路 第1回. 今日の内容 論理回路とは? 本講義の位置づけ,達成目標 講義スケジュールと内容 受講時の注意事項 成績の評価方法.
Bar-TOP における光の 群速度伝播の解析 名古屋大学 高エネルギー物理研究室 松石 武 (Matsuishi Takeru)
2008 年卒業制作発表会 買物意識の違いに着目し た消費者行動の分析 NE 17-0147 G 御堂丸圭介.
Analog “ neuronal ” networks in early vision Koch and Yuille et al. Proc Academic National Sciences 1986.
方程式を「算木」で 解いてみよう! 愛媛大学 教育学部 平田 浩一.
データベース入門 日進高等学校 情報化推進委員会. 表計算ソフトとの比較 表計算ソフト (Excel) データベース ( Access ) 編集 二人目はデータの編集が ロックされる 複数の人が同時にデータ を 編集できる 信頼性 ファイルの数だけ データが存在する データは一つ データ処理 自由.
測定における誤差 KEK 猪野 隆 論文は、自ら書くもの 誤差は、自分で定義するもの ただし、この定義は、 多数の人に納得してもらえるものであること.
温間ショットピーニングにおけるばね鋼の機械的性質
3.多項式計算アルゴリズム べき乗の計算 多項式の計算.
階層分析法. 表3. 1 ルートR1R1 R2R2 R3R3 R4R4 R5R5 F1F1 最寄駅までの所要 時間(分) 10 7 F2F2 実乗車時間(分) F3F3 片道切符(円) ヶ月定期(円) 11,21011,9309,75012,46012,720.
偏微分方程式の境界値問題を 基礎とするデジタル画像解析
通電着火による金属間化合物 TiAl の加圧反応焼結 塑性加工研究室 岩城 信二 通電焼結の特徴 導電性のある粉末を加圧 しながら短時間通電し,そ の抵抗発熱によって焼結す る. 粉末の自己発熱によって焼 結するため,エネルギ効率 が高い. TiAl における反応焼結に及ぼす 通電条件の影響 粉末 コンテナ.
移動エージェントプログラムの 動作表示のためのアニメーション言 語 名古屋大学情報工学コース 坂部研究室 高岸 健.
1 プログラミング言語論 第13回 プログラムの意味論と検証 (2) 表示的意味論 担当:犬塚. 2 表示的意味論 denotational semantics  表示的意味論では、プログラムの要素とそれが 意味するものを対応付ける。 変数 式 文 A B … A+2 2B+C A:=A+2 if.
Lectures on Rheology of Earth Materials Fundamentals and frontiers in the study of deformation of minerals and rocks (at Tohoku University) Shun-ichiro.
第14回 プログラムの意味論と検証(3) 不動点意味論 担当:犬塚
実験5 規則波 C0XXXX 石黒 ○○ C0XXXX 杉浦 ○○ C0XXXX 大杉 ○○ C0XXXX 高柳 ○○ C0XXXX 岡田 ○○ C0XXXX 藤江 ○○ C0XXXX 尾形 ○○ C0XXXX 足立 ○○
What is Restoration Ecology?. Restoration ecology の定義 生態的再生は劣化した、損傷した、ある いは破壊された生態系の回復を手助けす るプロセスである ( 再生生態国際学会の定義 )
プログラミング演習( 1 組) 第 8 回
Kitenet の解析 (110118) 九州大学 工学部 電気情報工学科 岡村研究室 久保 貴哉.
音の変化を視覚化する サウンドプレイヤーの作成
Self-efficacy(自己効力感)について
Photometric Stereo for Lambertian Surface Robert J. Woodham, "Photometric method for determining surface orientation from multiple shading images", Optical.
11万km上空のかぐやから見た地球. デジタル信号処理 Digital Signal Processing 2010 年度春学期 Spring Semester, 2010 担当者: 栗濱 忠司( Professor ) 第3週第3週.
東北大学 情報科学研究科 システム情報科学専攻 TOKUYAMA Lab. 1 左順序付き柔軟ラベリングの実 装 Implementation of Left-part ordered Flexible Labeling 東北大学大学院 情報科学研究科 ◎小池 敦 徳山 豪.
IIR 輪講復習 #18 Matrix decompositions and latent semantic indexing.
2015/11/19. To foster Historical Thinking Skill by Creating Story Necessary Relationships and Elements of Characters In historical learning, historical.
Bootstrapping 2014/4/13 R basic 3 Ryusuke Murakami.
肝臓移植 プロの肝臓移植サービスを選 択. 肝臓移植が必要なのはいつです か? 肝移植は、肝臓がもはや 適切に機能しなくなった とき(肝不全)に考慮さ れる。 ウイルス性肝炎、 薬物誘発傷害または感染 の結果として肝不全が突 然起こることがある(急 性肝不全)。 肝不全は長 期的な問題の最終結果で.
地球儀と様々な地図. 1 球体としての地球 こうした現象はあることをイ メージすると理解できる。
ガラス電極pH計での不確かさについて 中村 進 (NMIJ/AIST, Japan)
Presentation transcript:

題目題目 REINFORCEMENT EFFECT EVALUATION FOR THE GEOSYNTHETICE CLAY BANKING NAGASAKI UNIVERSITY K. TSUJI Y.TANABASHI Y.JIANG

Technology. Background of study ① Development of urban and underground space Security of the right spot is the difficult Increase of the cost Low quality soft clay from construction Society & environment Geosynetics reinforcement The reuse of low quality soil is promoted.

Background of study ②  Drainage capability  Tension strength Development of geocomposite. The geocomposite is feasible and more economic. The design of geocomposite is in a study phase. +

Purpose of the study. Kanto loam (The low quality soil) The steep slope is assumed. ・ Change of the consolidation of the every layer of the banking. ・ Reinforcement function of geoconposite. The reinforcement effect of geocomposite is evaluated by finite difference analysis. Behavior prediction Suggestion for the design of geocomposite reinforced embankment

Analysis method and outline. The difference between the construction period.  Friction angle of GC-soil.  Strength constant of the soil. Mohr-Coulomb model  The membrane element is selected to simulate. The behavior of the banking was evaluated. Set at each layer.

Analysis case. The difference between construction period and drainage distance by the laying interval.  Strength constant of the soil.  Friction angle of GC-soil Height of the banking. (m) Reinforcement laying space. (cm) Non-reinforced. (N),45(GC45),90(GC90) Slope gradient 1:0.6 Construction period. 240,480,720480,720720,960

The physical property in analysis. Physical properti values of banking material (Kanto lome ) ItemParameter Volumetric elastic coefficient bulk modulus K(kPa) 500 Cohesion c (kPa) 19.6 Density ρ (g/cm 3 ) Angel of internal friction φ cu (deg) Expression (1) Dilatancy angular ψ(deg) 0 Limit of tensile stress σ’ (kPa) 1.96 Physical properties value of geocomposite Cohesion of interface (kPa) 4.41 Angel of internal friction of interface φ cus (deg) Expression (2) Rotation of elastic modulus (kPa) Calculated from direct shear test.

Result of direct shear test. Choesion : It is almost constant regardless of the progress of the consolidation. Angle of internal friction : After the primary consolidation end, it approaches in the constant value. (1)(1) (2)(2) Kanto lome The friction angle of GC- soil interface Choesion : It is almost constant regardless of the progress of the consolidation. Angle of internal friction : After the primary consolidation end, it approaches in the constant value. GC-soil interface : kanto lome : The friction angle of Consolidation time (min) c cus = 4.41 (kPa) c cu =19.6 (kPa)

Banking consolidation period Introduction of banking consolidation period. From layer ①, the subsequent layers were heaped step by step, and actual consolidation period for every layer was calculated. ⑤ ④ ② ③ ① ⑥ 〔 Reference literature. 〕 Y.Tnahashi and H.Nagashima (2002): Geocomposite design method tentative plan. In this study Different consolidation coefficient and consolidation period were set at every 90cm/layer Determination of the physical property.

Consideration of construction period. The consolidation period for each layer is assumed to be the same, as illustrated The construction process. Erea Construction period ① ② ③ ④ ⑤ ⑥ (m)(m) Time Banking height

The analytical model A footing loading is loaded at every 5-10 kPa step to the crown surface of the embankment : The membrane element Crown width B=2H H (m) Banking height

Loading –settlement curve (8m) GC90_30day GC90_10day Displaced linearly. The control of settlement. GC45_10day GC45_30day Strength of load (kPa) Settlement (m) Increases with the consolidation degree N_10day N_30day A limit in the strengthning

Loading –settlement curve (12m) The rapid settlement. 12m seem to be the limit N_20 日 N_30 日 Displaced linearly The control of settlement. GC90_20day GC90_30 日 day GC45_20day GC45_30day The effect of consolidation period is not remarkable Settlement (m) Strength of load (kPa)

Limit of embankment height Banking height (m) Evaluation of limit of banking height. Safety factor A height of 11.3m The limit of embankment height is 14.4 m

The crown settlements of different height cases with GC45cm H=16m_GC45_40 day H=12m_GC45_30 day H=8m_GC45_30 day Strength of load (kPa) Settlement (m) The difference between the settlement. The settlement of the higher embankment is large

Load strength-deformation slope (8m) 100 cm The embankment collapses A large deformation occurred under a surface load of 50kPa N_50kPa The embankment is stable. GC90_50kPa No large deformation GC45_50kPa Initial slope

Load strength-deformation slope (12m) 100 cm Deformation is restrained Deformation strength is small GC90_50kPa GC45_50kPa Initial slope

Shear failure region (N) Load strength Destruction : 10kPa 20kPa 30kPa 40kPa50kPa 55kPa The embankment collapses The destruction area develops. 8m Case N

10kPa Load strength Displacement vector(N) 20kPa 30kPa 40kPa 10kPa 50kPa 55kPa The displacement is large. The destruction area Case N 8m

Displacement vector ( GC45cm) 10kPa 20kPa 40kPa60kPa Load strength Displacement control. Case GC45 The embankment is stable. 8m

Shear failure region ( GC45cm) Load strength 10kPa 20kPa 40kPa 60kPa 80kPa 8m No progress of breakdown region to banking upper part. : ケース GC45 The embankment is stable. Destruction

Tensile stress the reinforcement material The effect of the stress concentration on the toe slope. Distance from slope (m) Geocomposite tensile stress (kPa) The stress is also concentrating each GC near 4 ~ 6m from the slope The displacement control by the reinforcement maternal. Tensile stress of the reinforcement material The dispersion of the stress. Geocomposite tensile stress (kPa) Distance from slope (m) The embankment is stable.

Conclusion  Loading –settlement curve,Deformation of slope & Displacement vector. The strengthening by consolidation. The effect of restraining the displacement of the slope.  Considering the construction period.  Tensile stress of the reinforcement material Design of geocomposite reinforced embankment.

圧密時間の算出 検証実験結果 応力履歴がある最終段階の圧密沈下経 路 :ある層の排水距 離 :供試体の排水距 離 :実験における時 間 :実地盤における時 間 テルツァギの二乗 則 応力履歴のない圧密沈下経路 = ほぼ同一

換算圧密時間の算出 実際の圧密経路 P n ~ P n+3 :圧密圧 力 (盛土の自 重) ①②③④ 層番号 ① ③ ② ④ 様々な応力履歴を唯一の応力履歴に変換 t * n+1 ~ t * n+3 :換算圧密時 間

n 層目盛土の換算圧密時間 圧密時間の算出 (2) 時間係数 T V ≧ 0.5 の時 (1) 時間係数 T V <0.5 の時 テルツァギの圧密理論を基 本 各層について施工期間 毎に算出 解析物性値 の決定 沈下経路の傾き

メンブレン要素 接点ごとの引張応力を算出