SPEAR 3 Beam Stability and Stabilization R. Hettel NSLS-II Stability Workshop April 18-20, 2007.

Slides:



Advertisements
Similar presentations
Orbit Feedback NSLS-II stability workshop Visitor committee April 20, 2007.
Advertisements

ATF2: Status Update Glenn Christian (on behalf of FONT group) 10 th ATF Project Meeting.
SPEAR3 short pulse development J. Safranek for the SSRL accelerator physics group* Outline: Timing mode fill patterns Short bunches –Low alpha Bunch length.
Update of EXT Stripline BPM Electronics with LCLS-style Digital BPM Processors Glen White, with slides by Steve Smith 15 December 2009 ATF2.
Beam position monitors LCABD Plenary meeting Bristol, 24th March 2009 A. Aryshev, S. T. Boogert, G. Boorman, S. Molloy, N. Joshi JAI at Royal Holloway.
1 Slow Global Orbit Feedback at Pohang Light Source (PLS) Heung-Sik Kang Pohang Accelerator Laboratory Pohang, Korea.
FAST ORBIT CORRECTION AT THE ESRF Eric Plouviez on behalf of: J. Chavanne, J.M. Koch, J.L. Pons, F. Uberto, L. Zhang.
SPEAR3 Chicane, Accelerator Physics Update, February 10, 2005 Electron optics design review August 11, 2004 –“… no show stoppers. However, …” Additional.
Ron Johnson Beam Position October 29-31, Beam Position Monitors FAC Review October 29-31, 2007 Stripline BPM.
Laser to RF synchronisation A.Winter, Aachen University and DESY Miniworkshop on XFEL Short Bunch Measurement and Timing.
January 15, 2005D. Rubin - Cornell1 CESR-c Status -Operations/Luminosity December/January vs September/October -Machine studies and instrumentation -Simulation.
RF Synchronisation Issues
Bob Lill Undulator Cavity BPM System April 16, 2007 Undulator Cavity BPM Status.
1 BROOKHAVEN SCIENCE ASSOCIATES NSLS-II Stability Workshop April , 2007 NSLS-II Electrical Systems G. Ganetis NSLS-II Electrical Systems NSLS-II.
Progress towards nanometre-level beam stabilisation at ATF2 N. Blaskovic, D. R. Bett, P. N. Burrows, G. B. Christian, C. Perry John Adams Institute, University.
Searching for Quantum LOVE at the Australian Synchrotron Light Source Eugene Tan On behalf of Rohan Dowd 120/10/2010Eugene Tan – IWLC 2010, Genega ASLS.
ATF2 Q-BPM System 19 Dec Fifth ATF2 Project Meeting J. May, D. McCormick, T. Smith (SLAC) S. Boogert (RH) B. Meller (Cornell) Y. Honda (KEK)
29/06/2007FOFB at Diamond1 Fast Orbit Feedback (FOFB) at Diamond Guenther Rehm, Head of Diagnostics Group.
High Resolution Cavity BPM for ILC final focal system (IP-BPM) ILC2007/LCWS 2007 BDS, 2007/6/1 The University of Tokyo, KEK, Tohoku Gakuin University,
Alignment and Beam Stability
Beam Instrumentation for Orbit Stability I. Pinayev.
Characterization of Fast Orbit Feedback System Om Singh, APS, ANL NSLS-2 Beam Stability Workshop BNL, April 18-20, 2007.
LLRF System for Pulsed Linacs (modeling, simulation, design and implementation) Hooman Hassanzadegan ESS, Beam Instrumentation Group 1.
DLS Digital Controller Tony Dobbing Head of Power Supplies Group.
IWBS 2004 PSI, Grinderwald, Switzerland 6-10 December Orbit Stability: Recent Activities at ELETTRA, D. Bulfone Orbit Stability: Recent Activities.
Performance Improvement of APS Booster Ring Dipole Magnet Power Supplies Ju Wang The 3 rd Workshop on Power Converters for Particle.
1 Experience at ATF To get a low emittance beam Junji Urakawa KEK Circumference: m Arc Cell Type: FOBO Number of Arc Cells: 36 Energy: GeV.
1 Status of EMMA Shinji Machida CCLRC/RAL/ASTeC 23 April, ffag/machida_ ppt & pdf.
SPIE, PA-IVKrzysztof Czuba1 Improved fiber-optic link for the phase reference distribution system for the TESLA technology based projects Krzysztof.
Photon Beam Position Monitors and Beam Stability at the Swiss Light Source E. van Garderen, J. Krempaský, M. Böge, J. Chrin, T. Schmidt Paul Scherrer Institute,
Orbit Control For Diamond Light Source Ian Martin Joint Accelerator Workshop Rutherford Appleton Laboratory28 th -29 th April 2004.
Problems setting-up the ALBA FOFB Problems setting-up the ALBA FOFB DEELS May - ESRF Angel Olmos.
1Matthias LiepeAugust 2, 2007 LLRF for the ERL Matthias Liepe.
Storage ring optics characterization – the basics
1 BROOKHAVEN SCIENCE ASSOCIATES Issues on Closed Orbit Feedback for NSLSII NSLS-II Stability Workshop April 18-20, 2007 Li-Hua Yu.
1 BROOKHAVEN SCIENCE ASSOCIATES Storage Ring Commissioning Samuel Krinsky-Accelerator Physics Group Leader NSLS-II ASAC Meeting October 14-15, 2010.
1 BROOKHAVEN SCIENCE ASSOCIATES Stability Issues NSLS-II PAC Meeting May 24, 2007 S. Krinsky.
The ATF Damping Ring BPM Upgrade Nathan Eddy, Eliana Gianfelice-Wendt Fermilab for the ATF Damping Ring BPM Team.
F Beam Line Tuners Vic Scarpine Instrumentation DoE Review Oct 28-31, 2002.
Low emittance tuning in ATF Damping Ring - Experience and plan Sendai GDE Meeting Kiyoshi Kubo.
Collimator BPM electronics – Results from the lab, SPS and LHC
Vertical Emittance Tuning at the Australian Synchrotron Light Source Rohan Dowd Presented by Eugene Tan.
LCLS LLRF System October 10-13, 2005 LLRF05 B. Hong, R. Akre, A. Hill, D. Kotturi, H. Schwarz SLAC, Stanford, Menlo Park, CA 94025, USA Work supported.
R.SREEDHARAN  SOLEIL main parameters  Booster and storage ring low level RF system  New digital Booster LLRF system under development  Digital LLRF.
J-PARC Spin Physics Workshop1 Polarized Proton Acceleration in J-PARC M. Bai Brookhaven National Laboratory.
SLAC ESA T-474 ILC BPM energy spectrometer prototype Bino Maiheu University College London on behalf of T-474 Vancouver Linear Collider.
PSB H- injection concept J.Borburgh, C.Bracco, C.Carli, B.Goddard, M.Hourican, B.Mikulec, W.Weterings,
Electron beams in order to sense nm-size mechanical vibrations? CERN: Marek Gasior: BBQ electronics (Andrea Boccardi: VME electronics) Juergen Pfingstner:
Instrumentation at ATF / TTF Accelerator Test Facility (KEK) Tesla Test Facility – FLASH (DESY) ESA / LCLS (SLAC) Marc Ross, SLAC.
April 12 | Comparison of Sophisticated Synthesizer Concepts and Modern Step Attenuator Implementations | 2 Comparison of Sophisticated Synthesizer Concepts.
1 Jean-Claude DENARD Workshop on Accelerator R&D for Ultimate Storage Rings Version 2.0 ORBIT FEEDBACK SYSTEMS and XBPMs J-C. Denard, N. Hubert * and L.
C. Steier, USR 2012, Feedbacks for USR, Workshop on Accelerator R&D for Ultimate Storage Rings : Beijing / IHEP, October 2012 Feedbacks for Ultimate.
1 BROOKHAVEN SCIENCE ASSOCIATES Beam Stability Overview NSLS-II CFAC Meeting May 8, 2007 S. Krinsky.
1 BROOKHAVEN SCIENCE ASSOCIATES Stability Issues NSLS-II ASAC Meeting April 23, 2007 S. Krinsky.
What did we learn from TTF1 FEL? P. Castro (DESY).
Accuracy of the orbit measurement by KEKB BPM system for the study of ILC damping ring H. Fukuma (KEK) Requirement for the accuracy of BPM data.
Fast Global Orbit Feedback for the Australian Synchrotron Eugene Tan Accelerator and Operations 13/12/20101 ACAS Workshop on Accelerator Feedback Systems.
Frequency Control through Pulse Width Modulation for NRF Cavities. As example at FLASH RF GUN Sven Pfeiffer for the LLRF team LLRF Workshop 2015 Shanghai,
Bunch by bunch feedback systems for KEKB Makoto Tobiyama KEK Accelerator Laboratory.
Ultra-low Emittance Coupling, method and results from the Australian Synchrotron Light Source Rohan Dowd Accelerator Physicist Australian Synchrotron.
Super-B Vibration Tolerances
Dither Luminosity feedback versus Fast IP feedback
Status of the ASTRID2 facility
Orbit Control For Diamond Light Source
Coupling Correction at the Australian Synchrotron
Commissioning the Fast Orbit Feedback System at SSRF
Fast Orbit Feedback at the SLS
Undulator Cavity BPM Status
Breakout Session SC3 – Undulator
Yuri Nosochkov Yunhai Cai, Fanglei Lin, Vasiliy Morozov
Presentation transcript:

SPEAR 3 Beam Stability and Stabilization R. Hettel NSLS-II Stability Workshop April 18-20, 2007

R. Hettel SPEAR 3 Orbit Stability and Stabilization NSLS-II Stability Workshop April 18-20, 2007 Acknowledgments Primary developers: T. Straumann: real-time processing, system architecture and communication A. Terebilo: accelerator physics, system operation development J. Sebek: turn-turn BPM processing D. Martin: BPM systems F. Rafael, G. Leyh: corrector power supply development Main contributors: S. Allison J. Corbett R. Hettel E. Medvedko G. Portmann T. Rabedeau J. Safranek C. Wermelskirchen E. Daly, N. Kurita, J Langton, A. Ringwall, J. Tanabe (SPEAR 3 mech des) EDM electrical support group

R. Hettel SPEAR 3 Orbit Stability and Stabilization NSLS-II Stability Workshop April 18-20, 2007 Stability Requirements Stability requirements for small beams may be relaxed if beam size at experiment is limited by beam line optics (e.g. mirror slope error, point-spread function, etc.) Stability requirements depend on time interval

R. Hettel SPEAR 3 Orbit Stability and Stabilization NSLS-II Stability Workshop April 18-20, 2007 Disturbance time scale << experiment integration time: Orbit disturbances blow up effective beam  and , reduce intensity at experiment, but do not add noise For   /  =  cm /  o < ~10%:  y cm (rms) < ~0.3  y  y cm (rms) < ~0.3  y' Note: can have frequency aliasing if don't obey Nyquist…. Disturbance periods  experiment integration time: Orbit disturbances add noise to experiment For   /  = ~2   cm /  o <~10%:  y cm (rms) < 0.05  y  y cm (rms) < 0.05  y' Disturbance periods >> experiment time (day(s) or more): Realigning experiment apparatus is a possibility Sudden beam jumps or spikes can be bad even if rms remains low Peak amplitudes can be > x5 rms level Most demanding stability requirements: Orbit disturbance frequencies approximately bounded at high end by data sampling rate and a low end by data integration and scan times  noise not filtered out Stability Time Scales

R. Hettel SPEAR 3 Orbit Stability and Stabilization NSLS-II Stability Workshop April 18-20, 2007 Short stiff girders and magnet supports (>20 Hz) Chamber constrained vertically and horizontally at BPMs Invar supports for key BPMs (~3  m/ o C) 18”-24” concrete floor Tunnel temp stable to ± ~1 o C/day SPEAR 3 Mechanical Design

R. Hettel SPEAR 3 Orbit Stability and Stabilization NSLS-II Stability Workshop April 18-20, 2007 SPEAR 3 Electrical Design – Power Supplies Dipole: stability: 50ppm (or better); 3 ppm/ O C diurnal ripple: 0.2% pk-pk of full output voltage ripple (DC-1 MHz) chopper freq: 20 kHz Quadrupole and Sextupole: stability: 100 ppm; 6 ppm/ O C diurnal ripple: 0.2% pk-pk of full output voltage ripple (DC-1 MHz) chopper freq: 40 kHz Correctors: stability: 500ppm; 30ppm/ O C diurnal noise: 17 ENOB, Hz – 4 kHz chopper freq: kHz DAC resolution/update rate: 24-bit (>18 bit for ± 1 mrad corrector) / 4 kHz bandwidth: ~1 kHz RF HVPS (90 kV) stability: < 0.1% FS ripple: < 1% pk-pk (<0.2% rms) above 60 kV Power supply stability requirements depend on ring design

R. Hettel SPEAR 3 Orbit Stability and Stabilization NSLS-II Stability Workshop April 18-20, 2007 SPEAR 3 BPMs and Processors Bergoz MX-BPM (modified) mux'd button processing (16 kHz) ADCs sample baseband button signals (before internal analog position calc circuit) SPEAR 3 version has: o 5 dB more input attenuation than standard module for 500 mA o wider IF filter to sample turn-turn orbit (2.2 MHz vs. 0.4 MHz) o ~2 mm res for injected beam (0.03 mA) Echotek Digital Receivers parallel I/Q processing of down-converted button signals (8 chan/module = 2 BPMs) IF = MHz (13 f rev ) sample freq = MHz (50 f rev ) provision for simultaneous processing of test tone calibration signal ~0.3-mm res for injected beam (0.03 mA) 2-µm turn-turn resolution at >~10 mA nanometer resolution in 100 Hz BW 84 mm 44.2 mm 34 mm 24 mm 13 mm18.8 mm 12-mm diam buttons BPM processor temperature regulated to < ± 0.4 o C pk

R. Hettel SPEAR 3 Orbit Stability and Stabilization NSLS-II Stability Workshop April 18-20, 2007 SPEAR 3 BPM Processing and Fast Orbit Feedback Note: SPEAR 3 was commissioned and operated until recently using slow orbit feedback running on MATLAB (Corbett, Portmann)

R. Hettel SPEAR 3 Orbit Stability and Stabilization NSLS-II Stability Workshop April 18-20, 2007 SPEAR 3 Fast Orbit Feedback Static orbit correction Dynamic orbit correction · 4 kHz update · latency (pipeline delay + deadtime) = ms · RTEMS realtime OS · EPICS control and monitoring x x ref S -1 U T xx K PI V  2 ea remote IOCs (+ phBPM IOC) Central CPU (1 GHz powerPC+altivec) 18 ea remote IOCs (8 correctors/IOC) 100 Mb/s E’net broadcast no TCP/IP 2 ea 100 Mb/s E’net no TCP/IP + -

R. Hettel SPEAR 3 Orbit Stability and Stabilization NSLS-II Stability Workshop April 18-20, 2007 Distributed weak perturbations: Uncorrelated small (~1μm) vibrations of individual magnets and supports cause orbit motion is concentrated in the modes with large singular values and frequency range 1-200Hz. SPEAR 3 Orbit Motion Localized strong perturbations: Gap or phase changes in undulators occur on a ~1s time scale. Local feed-forward correction was implemented using ID trim coils, adjacent quads (tune) and skew quads (coupling). Cause global orbit distortions of a few  m rms without FOFB. Vehicle traffic on the overpass bridge causes slow (~1s) motion of the floor and microns of orbit instability. RF power supply ripple inducing synchrotron oscillations FOFB correction of ID gap changes and bridge traffic effects. Based on 2 hours of averaged (0.5s)

R. Hettel SPEAR 3 Orbit Stability and Stabilization NSLS-II Stability Workshop April 18-20, 2007 SPEAR 3 Phase Oscillations and RF HVPS Ripple Phase oscillations measured with turn-turn BPM: 3.6 mrad rms = ~1.2 ps rms bunch length = 17 ps rms Working to implement mode-0 feedback RF HVPS ripple induces 0-mode longitudinal phase oscillations Problem with RF HVPS causes extra oscillation 60 Hz nominal ripple: 0.4% rms of 70 kV 100 ms 4 ms

R. Hettel SPEAR 3 Orbit Stability and Stabilization NSLS-II Stability Workshop April 18-20, 2007 FOFB effect on distributed weak wide bandwidth perturbations. Based on 1s of 4kHz BPM data Fast orbit feedback in operation since June, Integrator loop gains set conservatively for start of operations. Studies ongoing to find optimal tuning. SPEAR 3 Fast Orbit Feedback – Bandwidth Limiting factors: Corrector field penetration in vac chamber (copper with CuNi inlays for bandwidth to ~200 Hz) Time delay - 3 clock cycles

R. Hettel SPEAR 3 Orbit Stability and Stabilization NSLS-II Stability Workshop April 18-20, 2007 SPEAR 3 Fast Orbit Feedback - Eigenmodes 1.Uncorrected orbit error from ‘real’ sources 2.‘Spilling’ from other modes accumulating in corrector magnets Eigenmode spectrum Ignoring even a single eigenmode results in gradual buildup of error:

R. Hettel SPEAR 3 Orbit Stability and Stabilization NSLS-II Stability Workshop April 18-20, When modal K i and K p gains are tuned to reduce motion seen by in-loop electron BPMs, out-of-loop photon BPMs suffer integrator bandwidths for different eigenmodes SPEAR 3 Fast Orbit Feedback – Eigenmodes – cont. 4.Feedback gain/BW is reduced for higher eigenmodes to reduce orbit noise but to still allow modal “mop-up”

R. Hettel SPEAR 3 Orbit Stability and Stabilization NSLS-II Stability Workshop April 18-20, 2007 Vertical motion at photon BPMs (~15-20 m from source) not included in feedback can be 10s of microns even though stability shown by electron BPMs is <1  m “Beam Line Dynamic Steering” (BLDS) has been introduced: Response of photon BPMs to a local angle bump in 2 electron BPMs is measured offline Photon BPM data averaged for 1 min for each beamline Once a minute apply calculated correction to the electron BPM FOFB target. BLDS is not perfect: 1 degree of freedom does not exactly correct source motion; combination of position and angle could be tuned to maximize performance FOFB architecture allows to bring in pBPM data at 4 kHz rate and response matrix can be extended to include pBPMs Practical issue for including pBPMs in response matrix: need to reconfigure matrix (add/remove rows) on the fly when beam lines open and close SPEAR 3 Photon Monitor Feedback

R. Hettel SPEAR 3 Orbit Stability and Stabilization NSLS-II Stability Workshop April 18-20, 2007 Beam Line Mirror Feedback T. Rabedeau, SSRL error signal obtained from position sensitive detector near beam focus error signal used to control piezo high voltage piezo provides mirror fine pitch control with typical full range of motion +/- 30  rad or +/- 0.6mm or more focus motion. focus 1.4  m rms source 17.3  m rms

R. Hettel SPEAR 3 Orbit Stability and Stabilization NSLS-II Stability Workshop April 18-20, 2007 SPEAR 3 Fast Orbit Feedback – Operator Interface

R. Hettel SPEAR 3 Orbit Stability and Stabilization NSLS-II Stability Workshop April 18-20, oC2oC RF frequency (green) changes by 1 kHz (  C/C = ~0.5 mm/234 m) for a 2 o C tunnel temperature variation (red) over 1 month period RF Frequency Feedback RF frequency (green) changes ~30 Hz twice daily from lunar tide (9 o C pk-pk outside diurnal temperature over 4 days shown in violet)

R. Hettel SPEAR 3 Orbit Stability and Stabilization NSLS-II Stability Workshop April 18-20, 2007 SPEAR Floor Motion Floor monument changes in first year of operation HLS (Georg Gassner) Data correlation analysis over 1 year suggests external temperature is the main factor for short term floor movement, not the internal temperature of the tunnel. More HLS sensors to be added

R. Hettel SPEAR 3 Orbit Stability and Stabilization NSLS-II Stability Workshop April 18-20, 2007 SPEAR 3 Orbit Stability and Feedback – Future Development Plan to characterize diurnal instability of floor, ring and beam line components using high resolution sensors (HLS, etc). This information might be included in feedback/feedforward Studying to potential improvement gained by adding a roof over SPEAR (and possibly subsequent air conditioning) Beam line dynamic steering to be integrated into FOFB Better photon monitors are being developed More parallel BPM processors will be added (will pay attention to new SLS/DESY design) Plan to continue developing feedback to incorporate ring and beam line sensors and actuators