Analysis of Variance (ANOVA) ANOVA can be used to test for the equality of three or more population means We want to use the sample results to test the.

Slides:



Advertisements
Similar presentations
Analisis Varians/Ragam Klasifikasi Dua Arah Pertemuan 18 Matakuliah: L0104 / Statistika Psikologi Tahun : 2008.
Advertisements

1 Chapter 10 Comparisons Involving Means  1 =  2 ? ANOVA Estimation of the Difference between the Means of Two Populations: Independent Samples Hypothesis.
1 1 Slide Slides by JOHN LOUCKS St. Edward’s University.
Chapter 10 Comparisons Involving Means
1 1 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
© 2010 Pearson Prentice Hall. All rights reserved Single Factor ANOVA.
1 1 Slide © 2009, Econ-2030 Applied Statistics-Dr Tadesse Chapter 10: Comparisons Involving Means n Introduction to Analysis of Variance n Analysis of.
Statistics for Managers Using Microsoft® Excel 5th Edition
Chapter 3 Analysis of Variance
PSY 307 – Statistics for the Behavioral Sciences
Basic concept of statistics Measures of central Measures of central tendency Measures of dispersion & variability.
Basic concept of statistics Measures of central Measures of central tendency Measures of dispersion & variability.
1 Pertemuan 13 Analisis Ragam (Varians) - 2 Matakuliah: I0272 – Statistik Probabilitas Tahun: 2005 Versi: Revisi.
1 Pertemuan 10 Analisis Ragam (Varians) - 1 Matakuliah: I0262 – Statistik Probabilitas Tahun: 2007 Versi: Revisi.
Lecture 12 One-way Analysis of Variance (Chapter 15.2)
1 Chapter 11 – Test for the Equality of k Population Means nRejection Rule where the value of F  is based on an F distribution with k - 1 numerator d.f.
1 1 Slide © 2005 Thomson/South-Western AK/ECON 3480 M & N WINTER 2006 n Power Point Presentation n Professor Ying Kong School of Analytic Studies and Information.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS & Updated by SPIROS VELIANITIS.
1 1 Slide © 2003 South-Western/Thomson Learning™ Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
CHAPTER 3 Analysis of Variance (ANOVA) PART 1
Statistics Design of Experiment.
1 1 Slide © 2009 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edward’s University.
© 2006 by Thomson Learning, a division of Thomson Asia Pte Ltd.. 1 Slide Slide Slides Prepared by Juei-Chao Chen Fu Jen Catholic University Slides Prepared.
1 1 Slide 統計學 Spring 2004 授課教師:統計系余清祥 日期: 2004 年 3 月 30 日 第八週:變異數分析與實驗設計.
1 1 Slide © 2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
1 1 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
HAWKES LEARNING SYSTEMS math courseware specialists Copyright © 2010 by Hawkes Learning Systems/Quant Systems, Inc. All rights reserved. Chapter 14 Analysis.
1 1 Slide © 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
QNT 531 Advanced Problems in Statistics and Research Methods
1 1 Slide © 2006 Thomson/South-Western Slides Prepared by JOHN S. LOUCKS St. Edward’s University Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
1 1 Slide © 2005 Thomson/South-Western Chapter 13, Part A Analysis of Variance and Experimental Design n Introduction to Analysis of Variance n Analysis.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Chapter 13 Experimental Design and Analysis of Variance nIntroduction to Experimental Design.
1 1 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
1 1 Slide Analysis of Variance Chapter 13 BA 303.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edward’s University.
1 1 Slide Simple Linear Regression Coefficient of Determination Chapter 14 BA 303 – Spring 2011.
Lesson 2. ANOVA Analysis of Variance One Way ANOVA One variable is measured for many different treatments (population)_ Null Hypothesis: all population.
CHAPTER 12 Analysis of Variance Tests
Basic concept Measures of central tendency Measures of central tendency Measures of dispersion & variability.
1 Chapter 13 Analysis of Variance. 2 Chapter Outline  An introduction to experimental design and analysis of variance  Analysis of Variance and the.
1 1 Slide © 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
1 Analysis of Variance Chapter 14 2 Introduction Analysis of variance helps compare two or more populations of quantitative data. Specifically, we are.
1 1 Slide © 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
Basic concept of statistics Measures of central Measures of central tendency Measures of dispersion & variability.
Copyright © Cengage Learning. All rights reserved. 12 Analysis of Variance.
Econ 3790: Business and Economic Statistics Instructor: Yogesh Uppal
Econ 3790: Business and Economic Statistics Instructor: Yogesh Uppal
© 2006 by Thomson Learning, a division of Thomson Asia Pte Ltd.. 1 Slide Slide Slides Prepared by Juei-Chao Chen Fu Jen Catholic University Slides Prepared.
ANalysis Of VAriance can be used to test for the equality of three or more population means. H 0 :  1  =  2  =  3  = ... =  k H a : Not all population.
1 1 Slide © 2011 Cengage Learning Assumptions About the Error Term  1. The error  is a random variable with mean of zero. 2. The variance of , denoted.
1/54 Statistics Analysis of Variance. 2/54 Statistics in practice Introduction to Analysis of Variance Analysis of Variance: Testing for the Equality.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edward’s University.
CHAPTER 3 Analysis of Variance (ANOVA) PART 2 =TWO- WAY ANOVA WITHOUT REPLICATION.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edward’s University.
1 Pertemuan 19 Analisis Varians Klasifikasi Satu Arah Matakuliah: I Statistika Tahun: 2008 Versi: Revisi.
Rancangan Acak Lengkap ( Analisis Varians Klasifikasi Satu Arah) Pertemuan 16 Matakuliah: I0184 – Teori Statistika II Tahun: 2009.
Chapter 13 Analysis of Variance (ANOVA). ANOVA can be used to test for differences between three or more means. The hypotheses for an ANOVA are always:
CHAPTER 3 Analysis of Variance (ANOVA) PART 1
Chapter 11 – Test for the Equality of k
Pertemuan 17 Analisis Varians Klasifikasi Satu Arah
CHAPTER 3 Analysis of Variance (ANOVA) PART 1
CHAPTER 4 Analysis of Variance (ANOVA)
CHAPTER 3 Analysis of Variance (ANOVA)
Statistics Analysis of Variance.
CHAPTER 4 Analysis of Variance (ANOVA)
Statistics for Business and Economics (13e)
Econ 3790: Business and Economic Statistics
Chapter 15 Analysis of Variance
Chapter 10 – Part II Analysis of Variance
Presentation transcript:

Analysis of Variance (ANOVA) ANOVA can be used to test for the equality of three or more population means We want to use the sample results to test the following hypotheses. H 0 :  1  =  2  =  3  = ... =  k  H a : Not all population means are equal Rejecting H 0 means that at least two population means have different values.

Assumptions of ANOVA The values from each population are normally distributed. The variance,  2, is the same for all of the populations. The observations must be independent.

Impact of Assumptions Given these assumptions, what is the source of variation among the observed variables? Two values could come from different populations, or distributions, which could have different means. Two values could come from the same distribution.

ANOVA:Testing for the Equality of k Population Means The ANOVA table Between-treatments estimate of  2 Within-treatments estimate of  2 Comparing these two estimates: The F Test

Preliminaries Compute the jth sample mean and variance, j = 1,…,k Compute the overall sample mean Note: the book calls this n T

Between-Treatment Estimate of  2 Sum of squares due to treatments A between-treatments estimate of  2, MSTR, can be computed by

Within-Treatment Estimate of  2 The within-treatments estimate of  2

The ANOVA Table Source of Sum of Degrees of Mean Variation Squares Freedom Squares F Between SSTR k - 1 MSTR MSTR/MSE Within SSE n T - k MSE Total SSTn T - 1

Example: Kelli Home Products, Inc. Kelli Home Products, Inc. is considering marketing a long lasting car wax. Three different waxes (Type 1, Type 2, and Type 3) have been developed. In order to test the durability of these waxes, 5 new cars were waxed with Type 1, 5 with Type 2, and 5 with Type 3. Each car was then repeatedly run through an automatic carwash until the wax coating showed signs of deterioration. The number of times each car went through the carwash is shown on the next slide. Kelli Home Products, Inc. must decide which wax to market. Are the three waxes equally effective?

Example continued ObservationType 1 Type 2 Type Sample Mean Sample Variance

The F-Test If the null hypothesis is true and the ANOVA assumptions are valid, the sampling distribution of MSTR/MSE is an F distribution with k – 1 numerator and n T – k denominator df If the means of the k populations are not equal, the value of MSTR/MSE will be inflated because MSTR overestimates  2.

Sampling Distribution of MSTR/MSE The figure below shows the rejection region associated with a level of significance equal to  where F  denotes the critical value. Do Not Reject H 0 Reject H 0 MSTR/MSE FF FF Critical Value

The F-Test We will reject H 0 if the resulting value of MSTR/MSE appears to be too large to have been selected at random from the appropriate F distribution. Our decision rule becomes

Assuming  =.05, F.05 = 3.89 (2 d.f. numerator, 12 d.f. denominator). Therefore, reject H 0 if F > 3.89 Test Statistic: F = MSTR/MSE = 245/ = 9.55 Decision:Reject H 0 There appears to be a difference in the types of wax at a 5% level of significance. Example continued

Multiple Comparison Procedures If ANOVA provides statistical evidence to reject the null hypothesis of equal population means, then Fisher’s least significance difference (LSD) procedure can be used to determine where the differences occur.

Fisher’s LSD Procedure Pairwise hypothesis tests of the form Test Statistic

Fisher’s LSD Procedure Rejection rule:

Alternative Fisher’s LSD Procedure Hypotheses Rejection Rule where

Using LSD in our Example Assuming  =.05, t.025,12 = – Test Statistic – Conclusion The mean number of hours worked at Plant 1 is not equal to the mean number worked at Plant 2.

Using LSD in our Example Note that Since 13 > 6.98, and 11 > 6.98, we conclude that types 1 and 2 have different means, and types 2 and 3 have different means, but there is no significant difference between the means of types 1 and 3.

Getting it Done in EXCEL Use Tools/Data Analysis/ANOVA: Single Factor Data should be in columns which represent each treatment

Experimental Design Statistical studies can be classified as being either experimental or observational. In an experimental study, one or more factors are controlled so that data can be obtained about how the factors influence the variables of interest. In an observational study, no attempt is made to control the factors. Cause-and-effect relationships are easier to establish in experimental studies than in observational studies.