Low-Energy Phenomenologies of FCNC Z 0 Cheng-Wei Chiang ( 蔣正偉 ) National Central University & Academia Sinica Cheng-Wei Chiang ( 蔣正偉 ) National Central.

Slides:



Advertisements
Similar presentations
Phenomenology of Charmless Hadronic B Decays Denis Suprun University of Chicago Thanks to C.-W. Chiang, M. Gronau, Z. Luo, J. Rosner for enjoyable collaborations.
Advertisements

Flavor Violation in SUSY SEESAW models 8th International Workshop on Tau-Lepton Physics Tau04 Junji Hisano (ICRR, U of Tokyo)
FCNC Z 0 Model and Effects in B Physics Cheng-Wei Chiang National Central University & Academia Sinica Cheng-Wei Chiang National Central University & Academia.
Solving the B  K  Puzzle Cheng-Wei Chiang National Central University & Academia Sinica Cheng-Wei Chiang National Central University & Academia Sinica.
The minimal B-L model naturally realized at TeV scale Yuta Orikasa(SOKENDAI) Satoshi Iso(KEK,SOKENDAI) Nobuchika Okada(University of Alabama) Phys.Lett.B676(2009)81.
The classically conformal B-L extended standard model Yuta Orikasa Satoshi Iso(KEK,SOKENDAI) Nobuchika Okada(University of Alabama) Phys.Lett.B676(2009)81.
Maximal Flavor Violation based on work in: 1. arXiv/ AR & Shaouly Bar-Shalom 2. arXiv/ AR, Daniel Whiteson, Felix Yu & Shaouly Bar-Shalom.
Fourth Generation Leptons Linda Carpenter UC Irvine Dec 2010.
F. Richard Feb 2003 A Z’ within the ‘Little Higgs’ Scenario The LHC/LC Study group meeting CERN.
Comprehensive Analysis on the Light Higgs Scenario in the Framework of Non-Universal Higgs Mass Model M. Asano (Tohoku Univ.) M. Senami (Kyoto Univ.) H.
THE SEARCH FOR THE HIGGS BOSON Aungshuman Zaman Department of Physics and Astronomy Stony Brook University October 11, 2010.
Early LHC bound on W’ mass in nonuniversal gauge interaction model Kang Young Lee Konkuk University Seoul, Korea 양재교육문화회관
Little Higgs Dark Matter and Its Implications at the LHC Chuan-Ren Chen (NTNU) XS 2014, 5/6/2014 In collaboration with H-C Tsai, M-C Lee, [hep-ph]
Hadronic EDMs in SUSY GUTs
B. Dutta Texas A&M University Phys.Rev.Lett.100:181801,2008; arXiv: ; To appear Grand Unified Models, Proton Decay and Phase of Collaborator: Yukihiro.
Summary of Results and Projected Sensitivity The Lonesome Top Quark Aran Garcia-Bellido, University of Washington Single Top Quark Production By observing.
Current Methods of determining V ub I. Endpoint of the inclusive lepton spectrum II. Exclusive decays Methods of determining V ub with small theoretical.
Summary of Results and Projected Precision Rediscovering the Top Quark Marc-André Pleier, Universität Bonn Top Quark Pair Production and Decay According.
DPF Victor Pavlunin on behalf of the CLEO Collaboration DPF-2006 Results from four CLEO Y (5S) analyses:  Exclusive B s and B Reconstruction at.
Susy05, Durham 21 st July1 Split SUSY at Colliders Peter Richardson Durham University Work done in collaboration with W. Kilian, T. Plehn and E. Schmidt,
The new Silicon detector at RunIIb Tevatron II: the world’s highest energy collider What’s new?  Data will be collected from 5 to 15 fb -1 at  s=1.96.
K. Kumar, W. Marciano, Y. Li Electroweak physics at EIC - Summary of week 7 INT Workshop on Pertubative and Non-Pertubative Aspects of QCD at Collider.
CP VIOLATION in b → s l + l - Transition. Direct CP-Violation CP non-conservation shows up as a rate difference between two processes that are the CP.
1 B Physics at CDF Junji Naganoma University of Tsukuba “New Developments of Flavor Physics“ Workshop Tennomaru, Aichi, Japan.
Summary of Recent Results on Rare Decays of B Mesons from BaBar for the BaBar Collaboration Lake Louise Winter Institute Chateau Lake Louise February.
Search for Anomalous tWb Couplings at D0, L. Li (Shanghai Jiao Tong University) SUSY 2012, August 16, Liang Li Shanghai Jiao Tong University Search.
Kaluza-Klein gluon production at the LHC
ICFP05, NCU1 B → Kπ decays and new physics in the EW-penguin sector Yu, Chaehyun ( Yonsei University) October 6, 2005 In Collaboration with C.S. Kim, S.
Tension Between A Fourth Generation And The LHC Higgs Searches Xiao-Gang He (SJTU&NTU) Xiao-Gang He and German Valencia, arXiv: Xiao-Gang He and.
2. Two Higgs Doublets Model
Test Z’ Model in Annihilation Type Radiative B Decays Ying Li Yonsei University, Korea Yantai University, China Based on J. Hua, C.S Kim, Y. Li, arxiv:
Sensitivity Prospects for Light Charged Higgs at 7 TeV J.L. Lane, P.S. Miyagawa, U.K. Yang (Manchester) M. Klemetti, C.T. Potter (McGill) P. Mal (Arizona)
Constraints on the Scale of New Physics Phenomena from the Combined LEP II  f f and γγ Measurements Dimitri Bourilkov University of Florida for the LEP.
Trilinear Gauge Couplings at TESLA Photon Collider Ivanka Božović - Jelisavčić & Klaus Mönig DESY/Zeuthen.
1 Rare Bottom and Charm Decays at the Tevatron Dmitri Tsybychev (SUNY at Stony Brook) On behalf of CDF and D0 Collaborations Flavor Physics and CP-Violation.
Flavor induced EDMs with tanbeta enhanced corrections Minoru Nagai (ICRR, Univ. of Tokyo) Aug. 4, 2007 Summer Institute 2007 In collaborated with: J.Hisano.
Universality of weak interactions?
X ± -Gauge Boson Production in Simplest Higgs Matthew Bishara University of Rochester Meeting of Division of Particles and Fields August 11, 2011  Simplest.
Neutrino mass and DM direct detection Daijiro Suematsu (Kanazawa Univ.) Erice Sept., 2013 Based on the collaboration with S.Kashiwase PRD86 (2012)
1 Enhancement of in supersymmetric unified models Yukihiro Mimura (National Taiwan University) Talk at SUSY2015, Lake Tahoe.
Measurements of Top Quark Properties at Run II of the Tevatron Erich W.Varnes University of Arizona for the CDF and DØ Collaborations International Workshop.
Dynamical EWSB and Fourth Generation Michio Hashimoto (KEK) Mt. Tsukuba M.H., Miransky, M.H., Miransky, in preparation.
1 Searching for Z’ and model discrimination in ATLAS ● Motivations ● Current limits and discovery potential ● Discriminating variables in channel Z’ 
Top Quark Physics At TeVatron and LHC. Overview A Lightning Review of the Standard Model Introducing the Top Quark tt* Pair Production Single Top Production.
Single Top Quark Studies, L. Li (UC Riverside) ICHEP 08, July Liang Li University of California, Riverside for the CDF, DØ and H1 Collaborations.
October 2011 David Toback, Texas A&M University Research Topics Seminar1 David Toback Texas A&M University CIPANP, June 2012.
Higgs boson pair production in new physics models at hadron, lepton, and photon colliders October Daisuke Harada (KEK) in collaboration.
Charged Higgs boson at the LHC 이강영 ( 건국대학교 연세대학교
Family Gauge Bosons with an Inverted Mass Hierarchy Yoshio Koide (Osaka University) in collaboration with Toshifumi Yamashita (Maskawa Insititute, KSU)
Impact of quark flavour violation on the decay in the MSSM K. Hidaka Tokyo Gakugei University / RIKEN, Wako Collaboration with A. Bartl, H. Eberl, E. Ginina,
End User's View of Lattice QCD Cheng-Wei Chiang National Central University & Academia Sinica Lattice QCD Journal Club March 9, NTU.
B s Mixing Parameters and the Search for CP Violation at CDF/D0 H. Eugene Fisk Fermilab 14th Lomonosov Conference Moscow State University August ,
Introduction to Flavor Physics in and beyond the Standard Model Enrico Lunghi References: The BaBar physics book,
Marc M. Baarmand – Florida Tech 1 TOP QUARK STUDIES FROM CMS AT LHC Marc M. Baarmand Florida Institute of Technology PHYSICS AT LHC Prague, Czech Republic,
M. Frank, K. H., S.K. Rai (arXiv: ) Phys.Rev.D77:015006, 2008 D. Demir, M. Frank, K. H., S.K. Rai, I.Turan ( arXiv: ) Phys.Rev.D78:035013,
F. Richard ECFA Study June 2008 A 4th generation scenario F. Richard LAL/Orsay Beyond the 3SM generation at the LHC era.
Physics 222 UCSD/225b UCSB Lecture 15 Extending the Higgs Sector => 2 Higgs Doublet Models (2HDM). I am using the following for today’s lecture: – “Higgs.
EDMs in the SUSY GUTs Junji Hisano (ICRR, Univ. of Tokyo) NuFact04 6th International Workshop on Neutrino Factories and Superbeams, Osaka University, Japan.
Backup slides Z 0 Z 0 production Once  s > 2M Z ~ GeV ÞPair production of Z 0 Z 0 via t-channel electron exchange. e+e+ e-e- e Z0Z0 Z0Z0 Other.
LEP Search for Single Top production and new fermions Mario Antonelli LNF-INFN Frascati ICHEP 2002 Amsterdam on behalf of the 4- LEP experiments.
Beauty and charm at the LHC, Jeroen van Tilburg, FOM Veldhoven 2014 Jeroen van Tilburg Beauty and charm at the LHC: searches for TeV scale phenomena in.
1 Quark flavour observables in 331 models in the flavour precision era Quark flavour observables in 331 models in the flavour precision era Fulvia De Fazio.
Search for Standard Model Higgs in ZH  l + l  bb channel at DØ Shaohua Fu Fermilab For the DØ Collaboration DPF 2006, Oct. 29 – Nov. 3 Honolulu, Hawaii.
Hadronic EDMs in SUSY GUTs
Investigation on Diboson Production
Some Implications Of The Recent LHC Higgs Search Results Xiao-Gang He (SJTU&NTU) Xiao-Gang He and German Valencia, arXiv: Xiao-Gang He and.
Implications of D-Mixing for New Physics
Yasuhiro Okada (KEK/Sokendai) October 18, 2007
This talk based on PLB599, 83 and hep-ph/ Koji TSUMURA
Run-Hui Li Yonsei University
Presentation transcript:

Low-Energy Phenomenologies of FCNC Z 0 Cheng-Wei Chiang ( 蔣正偉 ) National Central University & Academia Sinica Cheng-Wei Chiang ( 蔣正偉 ) National Central University & Academia Sinica ASIOP May 5, 2006

C.W. ChiangLow-energy phenos of FCNC Z'2OutlineOutline [You will hear this talk again on 5/20.]  Motivations for an FCNC Z 0  Constraints from neutral meson mixings in the down sector  D meson mixing and single-top production  Summary Based on: V. Barger, CWC, H.S. Lee, and P. Langacker, PLB 580, 186 (2004); * V. Barger, CWC, J. Jiang, and P. Langacker, PLB 596, 229 (2004); V. Barger, CWC, H.S. Lee, and P. Langacker, PLB 598, 218 (2004); * A. Arhrib, K Cheung, CWC, T.C. Yuan, PRD 73, (2006) [ hep-ph/ ]; * K Cheung, CWC, N.G. Deshpande, and J. Jiang, hep-ph/ ; * CWC, N.G. Deshpande, and J. Jiang, in preparation.

C.W. ChiangLow-energy phenos of FCNC Z'3 Motivations for an FCNC Z 0

C.W. ChiangLow-energy phenos of FCNC Z'4 Fifth Force Extra heavy neutral Z 0 gauge bosons exist in most extensions of the SM and their SUSY versions, including GUT’s, XD models, string models, little Higgs, etc. The extra symmetry can forbid an elementary  term in SUSY, while allowing effective  and B  terms to be generated at the U(1) 0 breaking scale, providing a solution to the  problem. [Suematsu and Yamagishi, IJMPA 10, 4521 (1995); Cvetic and Langacker, PRD 54, 3570 (1996)] Accompanying with the extra symmetry are some extra fermions to cancel the anomaly and at least a Higgs singlet to break the symmetry. [e.g. Batra et al, hep-ph/ ]

C.W. ChiangLow-energy phenos of FCNC Z'5 Tree-Level FCNC Z 0 In the flavor eigenbasis, the Z 0 NC Lagrangian is given by In string models, it is possible to have family-nonuniversal Z 0 couplings to fermion fields due to different ways of constructing different families. [Chaudhuri et al, NPB 456, 89 (1995)] After flavor mixing, one obtains FCNC Z 0 interactions in the mass basis, which may even lead to new CP-violating effects: This may also induce flavor-violating Z couplings if there is a significant Z-Z 0 mixing. cf. Z

C.W. ChiangLow-energy phenos of FCNC Z'6 One Simple Example Take x ~ O(1), and V dL = V CKM y, then the down-sector coupling matrix Here, |B L sb | > |B L db | > |B L ds |. Same thing can be done to the up sector or even both. Such couplings may lead to observable FCNC effects.

C.W. ChiangLow-energy phenos of FCNC Z'7 Drell-Yan Process for Z’ Discovery The production cross section of Z’ followed by the leptonic decay is given by (with the narrow width approximation) where r = M Z ' 2 /s and  Z ' is the total width. The partial decay width of Z' → f f is where N f = 3(1) for quark (lepton) and  = m f 2 /M Z' 2. The FCNC contributions are negligible and Z’ → W + W − is highly suppressed by the Z-Z’ mixing angle.

C.W. ChiangLow-energy phenos of FCNC Z'8 Direct Searches at CDF Run II (2004) The mass of an extra Z’ from the non-observation of direct production (p anti-p → Z 0 → l l ) at CDF (√s = 1.96 TeV ) is found to be ≥ % CL (particular coupling assumed). [ The initial LHC reach will be 2 TeV (with power to discriminate among models) and can go up to 5 TeV.

C.W. ChiangLow-energy phenos of FCNC Z'9 Direct Searches at CDF Run II More recent data based on the integrated luminosity of 819 pb -1 of the Drell-Yan process at CDF (√s = 1.96 TeV ): [

C.W. ChiangLow-energy phenos of FCNC Z'10 Precision Data Constraints Precision data also provide stringent constraints. [Erler and Langacker, Review of Particle Physics 2004] LEP precision measurement of coupling constants at the Z-pole gives |  | < (a few)  [Erler and Langacker, PLB 456, 68 (1999)]

C.W. ChiangLow-energy phenos of FCNC Z'11 Discovery Reach at LHC [Dittmar, Nicollerat, and Djouadi 2004] The LHC can readily discover an extra neutral gauge boson with a mass of about 1 TeV from, for example, the Drell- Yan process.

C.W. ChiangLow-energy phenos of FCNC Z'12 Neutral Meson Mixings

C.W. ChiangLow-energy phenos of FCNC Z'13 B s Meson Mixing As in the case of B d mixing, the B s meson also provides us a good testing ground for the SM CKM mechanism. The experimental ratio  M d /  M s determines |V td /V ts |. In the SM,  M B s is expected to be about 18 ps -1, and its mixing phase  s is only a couple of degrees. Although new physics contributions may not compete with the SM processes in most of the b → c decays (  s less modified), they can play a more important role in B s mixing because of its loop nature in the SM. SM predictions (based upon the ratio of  M s /  M d ):  M s SM = (1.19 ± 0.24) £ GeV = 18.0 ± 3.7 ps -1, and x s SM ≡ (  M s /  s ) SM = 26.3 ± 5.5.

C.W. ChiangLow-energy phenos of FCNC Z'14 Results (LL Couplings Only) The LHCb will help us probe more about the production and decays of the yet-unfamiliar B S system. New physics contributions to the b → s transition induce |  B| = |  S| = 2 operators that affect B S mixing. [Barger, CWC, Jiang, Langacker 2004]

C.W. ChiangLow-energy phenos of FCNC Z'15 New Results from D0 & CDF The FCNC effect in b-s sector of the SM was recently confirmed in the B s meson mixing observed by both CDF and D0: Within the SM, this implies: |V td /V ts | = In comparison, the latest Belle results for b → d  and b → s  give a 95%CL range of ~ for the above ratio.

C.W. ChiangLow-energy phenos of FCNC Z'16 New Results from DØ & CDF [Cheung, CWC, Deshpande, Jiang 2006]  We re-evaluate the B s mass difference, but without reference to  M d, at the price of a larger hadronic uncertainty: This is consistent with the experimental result. One therefore can use it to constrain new physics parameters. Moreover, in the string-inspired model mentioned above, the ratio  M d /  M s can still be used to get |V td /V ts |.

C.W. ChiangLow-energy phenos of FCNC Z'17 Constraint From B s Mixing Now the effect of LH FCNC induced by the Z’ boson is: For  L sb =0 or 180 o,  L sb < 6.20 £ In more general models,  L sb may be different. For example, if  L sb = 90 o,  L sb < 9.87 £ Note that there are regions with  L sb > 9.87 £ also allowed by the current  M s constraint. Some of these regions correspond to Z' contributions larger than the SM contributions.

C.W. ChiangLow-energy phenos of FCNC Z'18 Constraint From Leptonic B s Decays The branching ratio of B s →  +  – is given by From the Drell-Yan process, one is then able to constrain the leptonic diagonal couplings. The current upper limits on Br(B s →  +  – ) from CDF and DØ based on 780 and 700 pb -1 data are 1.0 £ and 2.3 £ 10 -7, respectively. [R.V. Kooten, FPCP 2006]

C.W. ChiangLow-energy phenos of FCNC Z'19 Constraint From Drell-Yan In the particular model with only FCNC in the down sector, one can translate the upper limit  L sb < 6.20 £ to bounds on the flavor-diagonal Z’-q-q couplings. From the Drell-Yan process, one is then able to constrain the diagonal leptonic couplings as a function of the Z’ mass and the model parameter x.

C.W. ChiangLow-energy phenos of FCNC Z'20 Prediction of Muonic B s Decay From the present constraints from B s mixing and Z’ production, the muonic decay of B s may not be observed at the Tevatron if the projected integrated luminosity is less than O(5-10) fb. At LHCb, with anticipated production of b b pairs per year, the expected branching ratio of order is observable.

C.W. ChiangLow-energy phenos of FCNC Z'21 B d Meson Mixing [CWC, Deshpande, Jiang, in progress] Since Z’ may affect the B d system too, one has to re-examine the determination of  and  of the unitarity triangle: We use the observed  M B d and sin2  and the following inputs: This is because the Z’ contributions to the radiative B decays are both loop- and mass-suppressed.

C.W. ChiangLow-energy phenos of FCNC Z'22ResultsResults The fitting results are as follows, with 1  and 90%CL contours, to be compared with the CKMfitter result.

C.W. ChiangLow-energy phenos of FCNC Z'23 K Meson Mixing The general set of |  S| = 2 operators relevant in this case is: With, constraints from the measured  M K give The LR part is dominant due to chiral and RG enhancements in the form factor and Wilson coefficients, respectively.

C.W. ChiangLow-energy phenos of FCNC Z'24 Constraint from  K Requiring the contribution from Z ' to be less than the theoretical error (30%) associated with the SM prediction, we have A stronger bound is obtained by keeping only the dominant term: [cf. He and Valencia, PRD 70, (2004), where no RG effects and only RH couplings were considered.]

C.W. ChiangLow-energy phenos of FCNC Z'25 D Meson Mixing & Single-Top Production

C.W. ChiangLow-energy phenos of FCNC Z'26 Up-Sector FCNC [Arhrib, Cheung, CWC, and Yuan 2006] As said before, the FCNC can occur to the up sector too: In order to make definite predictions in our analysis, we take the above mixing matrix seriously. But we need to check the constraints from measured D meson mixing. Here, |B L ct | > |B L ut | > |B L uc |.

C.W. ChiangLow-energy phenos of FCNC Z'27 D Meson Mixing In D meson system, it is convenient to define: The values of x D and y D from NLO short-distance SM physics are found to be ~ 6 £ [Golowich and Petrov,PLB 625, 53 (2005)] Ignoring the SM contributions and considering only the LH couplings in the Z 0 model in our purely up-sector FCNC model with M Z 0 = 1 TeV, one obtains This is very safe from the latest CLEO result: –4.5% < x D < 9.3%. [CLEO, PRD 72, (2005)] [Arhrib, Cheung, CWC, Yuan]

C.W. ChiangLow-energy phenos of FCNC Z'28 Associated Top-Charm Production Production of single-top events at hadron colliders can provide a means to study new physics interactions. [Tait, Yuan 2001] As seen from the mixing matrix, the Z 0 -t-c coupling is the largest off-diagonal term. Take the purely up-sector FCNC Z 0 model seriously in order to make definite predictions. Total decay width (to fermions only) ranges from a few to a few tens of GeV, to be used in the Z 0 propagator.

C.W. ChiangLow-energy phenos of FCNC Z'29 Cross LHC The cross section of p p → (t anti-c) + (c anti-t) at LHC for some Z’ models and SM backgrounds: with Seq. Z, M Z’ = 1 TeV ~ O (1) fb

C.W. ChiangLow-energy phenos of FCNC Z'30 Secondary Vertex Mass Method / Charm Tagging Since the background at LHC is still about 5 times larger than the signal, one has to rely on secondary vertex mass method or D-, D * -tagging to further separate the charmed and the bottom jets. The bottom jet has the largest secondary vertex mass with a tail up to 4 GeV; the charmed jet has a secondary vertex mass ranging from 0 to 2 GeV with a peak around 1 GeV; and the light quark jets have the smallest secondary vertex masses. [CDF Public Note CDF/PHYS/CDF/PUBLIC/7072] Reconstruct prompt charmed mesons: D 0 → K -  +, D *+ → D 0  + with D 0 → K -  +, D + → K -  +  +, and D s + →   + with  → K + K -.

C.W. ChiangLow-energy phenos of FCNC Z'31 Top-Charm ILC At linear colliders such as the ILC, only the s-channel diagram contributes to the process e + e - → anti-t c or t anti-c. Detection of such events at an e + e - collider is much more straight-forward because the SM single top-quark production proceeds through  -t-q and Z-t-q FCNC couplings (q=u,c) that are GIM suppressed. [Huang, Wu, and Zhu, PLB 452, 143 (1999)] One can measure under the Z ' peak the cross-section ratio  ( t anti-c +anti-t c)/  ( t anti-t ) to determine the parameter x. ~ O (100) fb

C.W. ChiangLow-energy phenos of FCNC Z' 32 We have extracted constraints of FCNC couplings in the models using current data on neutral meson mixing. In particular, we studied the b-s sector using latest B s mixing data and its implication in a particular type of models. We have studied single top-quark production at both LHC and ILC in a purely top-sector FCNC Z’ model. Detection of single-top production at LHC can be difficult, but should be easy at ILC. We are studying constraints from the leptonic sector too, using the lepton EDM and LFV processes.Summary