Elementary Number Theory and Methods of Proof

Slides:



Advertisements
Similar presentations
Discrete Math Methods of proof 1.
Advertisements

Introduction to Proofs
Chapter 3 Elementary Number Theory and Methods of Proof.
1 In this lecture  Number Theory ● Rational numbers ● Divisibility  Proofs ● Direct proofs (cont.) ● Common mistakes in proofs ● Disproof by counterexample.
Chapter 3 Elementary Number Theory and Methods of Proof.
Proofs, Recursion and Analysis of Algorithms Mathematical Structures for Computer Science Chapter 2 Copyright © 2006 W.H. Freeman & Co.MSCS SlidesProofs,
Copyright © Cengage Learning. All rights reserved. CHAPTER 5 SEQUENCES, MATHEMATICAL INDUCTION, AND RECURSION SEQUENCES, MATHEMATICAL INDUCTION, AND RECURSION.
3.3 Divisibility Definition If n and d are integers, then n is divisible by d if, and only if, n = dk for some integer k. d | n  There exists an integer.
– Alfred North Whitehead,
Copyright © Cengage Learning. All rights reserved.
CSE115/ENGR160 Discrete Mathematics 01/31/12 Ming-Hsuan Yang UC Merced 1.
CSE115/ENGR160 Discrete Mathematics 02/01/11
CMSC 250 Discrete Structures Number Theory. 20 June 2007Number Theory2 Exactly one car in the plant has color H( a ) := “ a has color”  x  Cars –H(
Proof Must Have Statement of what is to be proven.
Introduction to Proofs ch. 1.6, pg. 87,93 Muhammad Arief download dari
Copyright © Cengage Learning. All rights reserved.
Copyright © Cengage Learning. All rights reserved.
1 Number Theory and Methods of Proof Content: Properties of integer, rational and real numbers. Underlying theme: Methods of mathematical proofs.
C OURSE : D ISCRETE STRUCTURE CODE : ICS 252 Lecturer: Shamiel Hashim 1 lecturer:Shamiel Hashim second semester Prepared by: amani Omer.
Week 3 - Wednesday.  What did we talk about last time?  Basic number theory definitions  Even and odd  Prime and composite  Proving existential statements.
DISCRETE MATHEMATICS I LECTURES CHAPTER 4 Dr. Adam Anthony Spring 2011 Some material adapted from lecture notes provided by Dr. Chungsim Han and Dr. Sam.
Methods of Proof & Proof Strategies
Introduction to Proofs
1 Methods of Proof CS/APMA 202 Epp, chapter 3 Aaron Bloomfield.
Copyright © Cengage Learning. All rights reserved. CHAPTER 4 ELEMENTARY NUMBER THEORY AND METHODS OF PROOF ELEMENTARY NUMBER THEORY AND METHODS OF PROOF.
Chapter 3 Elementary Number Theory and Methods of Proof.
Week 3 - Monday.  What did we talk about last time?  Predicate logic  Multiple quantifiers  Negating multiple quantifiers  Arguments with quantified.
Section 1.8. Section Summary Proof by Cases Existence Proofs Constructive Nonconstructive Disproof by Counterexample Nonexistence Proofs Uniqueness Proofs.
Copyright © Cengage Learning. All rights reserved. CHAPTER 4 ELEMENTARY NUMBER THEORY AND METHODS OF PROOF.
10/17/2015 Prepared by Dr.Saad Alabbad1 CS100 : Discrete Structures Proof Techniques(1) Dr.Saad Alabbad Department of Computer Science
1 Introduction to Abstract Mathematics Chapter 3: Elementary Number Theory and Methods of Proofs Instructor: Hayk Melikya Direct.
1 Sections 1.5 & 3.1 Methods of Proof / Proof Strategy.
Chapter 5 Existence and Proof by contradiction
Methods of Proof Lecture 3: Sep 9. This Lecture Now we have learnt the basics in logic. We are going to apply the logical rules in proving mathematical.
Copyright © Cengage Learning. All rights reserved. CHAPTER 8 RELATIONS.
1 Methods of Proof Proof techniques in this handout –Direct proof –Division into cases –Proof by contradiction In this handout, the proof techniques will.
Copyright © Cengage Learning. All rights reserved.
Chapter 2 The Logic of Quantified Statements. Section 2.1 Intro to Predicates & Quantified Statements.
Methods of Proof Dr. Yasir Ali. Proof A (logical) proof of a statement is a finite sequence of statements (called the steps of the proof) leading from.
4.1 Proofs and Counterexamples. Even Odd Numbers Find a property that describes each of the following sets E={…, -4, -2, 0, 2, 4, 6, …} O={…, -3, -1,
Chapter 2 Logic 2.1 Statements 2.2 The Negation of a Statement 2.3 The Disjunction and Conjunction of Statements 2.4 The Implication 2.5 More on Implications.
Method of proofs.  Consider the statements: “Humans have two eyes”  It implies the “universal quantification”  If a is a Human then a has two eyes.
Copyright © Cengage Learning. All rights reserved. CHAPTER 4 ELEMENTARY NUMBER THEORY AND METHODS OF PROOF ELEMENTARY NUMBER THEORY AND METHODS OF PROOF.
Copyright © Cengage Learning. All rights reserved. CHAPTER 8 RELATIONS.
CS104:Discrete Structures Chapter 2: Proof Techniques.
Week 3 - Monday.  What did we talk about last time?  Predicate logic  Multiple quantifiers  Negating multiple quantifiers  Arguments with quantified.
Week 4 - Friday.  What did we talk about last time?  Floor and ceiling  Proof by contradiction.
1 CMSC 250 Chapter 3, Number Theory. 2 CMSC 250 Introductory number theory l A good proof should have: –a statement of what is to be proven –"Proof:"
Section 1.7. Definitions A theorem is a statement that can be shown to be true using: definitions other theorems axioms (statements which are given as.
Direct Proof and Counterexample I Lecture 11 Section 3.1 Fri, Jan 28, 2005.
Section 2.2 More practice with Direct Proofs. Directions for Writing Proofs 1.Copy the statement of the theorem to be proved onto your paper. 2.Clearly.
Methods of Proof Lecture 4: Sep 20 (chapter 3 of the book, except 3.5 and 3.8)
Proof And Strategies Chapter 2. Lecturer: Amani Mahajoub Omer Department of Computer Science and Software Engineering Discrete Structures Definition Discrete.
Methods of Proof Proof techniques in this handout
Direct Proof and Counterexample III: Divisibility
Direct Proof and Counterexample I: Introduction
Reflexivity, Symmetry, and Transitivity
Chapter 3 The Real Numbers.
Methods of Proof CS 202 Epp, chapter 3.
Chapter 1: The Foundations: Logic and Proofs
ELEMENTARY NUMBER THEORY AND METHODS OF PROOF
Direct Proof and Counterexample I:Introduction
The Foundations: Logic and Proofs
ELEMENTARY NUMBER THEORY AND METHODS OF PROOF
CS 220: Discrete Structures and their Applications
ELEMENTARY NUMBER THEORY AND METHODS OF PROOF
Copyright © Cengage Learning. All rights reserved.
Agenda Proofs (Konsep Pembuktian) Direct Proofs & Counterexamples
PROGRAMME: F.Y.B.Sc.I.T. (SEM-I) COURSE: DISCRETE MATHEMATICS
Presentation transcript:

Elementary Number Theory and Methods of Proof Chapter 3 Elementary Number Theory and Methods of Proof

Direct Proof and Counterexample 1 Integers 3.1 Direct Proof and Counterexample 1 Integers

Mathematical Proof A mathematical proof is a carefully reasoned argument to convince a skeptical listener. (pg 125) Example: How would you prove if 5x + 3 = 33 then, x = 6? 5x + 3 – 3 = 33 – 3 5x = 30 5x / 5 = 30 / 5 x = 6

Properties Equality Property A = A A = B then B = A A = B and B = C then A = C Integers closed under addition, subtraction, multiplication. integer + integer = integer integer – integer = integer integer * integer = integer

Even & Odd Integers Definition an integer n is even if, and only if, n equals twice some integer. n is even ⇔ ∃an integer k such that n =2k an integer n is odd if, and only if, n equals twice some integer + 1. n is even ⇔∃an integer k such that n = 2k + 1

Example Is 0 even? Is -301 odd? Is 6a2b even, if a and b are integers? Yes, 0 = 2 * 0 Is -301 odd? Yes, 2(-151) + 1 Is 6a2b even, if a and b are integers? Yes, 2(3a2b) (integers closed on multiplication) If a and b are integers, is 10a + 8b + 1 odd? Yes, 2(5a + 4b) + 1, where s = 5a + 4b, then 2s + 1 hence, odd because the definition of odd integers.

Prime and Composite Definition of Prime Definition of Composite n is prime ⇔ ∀positive integers r and s, if n = r*s then r=1 or s=1. n>1 Definition of Composite n is composite ⇔ ∃positive integers r and s such that n = r * s and r ≠ 1 or s ≠1.

Example Is 1 prime? No, for definition n > 1. Is it true that every integer greater than 1 is either prime or composite? Yes, for any integer n > 1 the definitions are negations of each other. Write the first 6 prime numbers. 2, 3, 5, 7, 11, 13 Write the first 6 composite numbers. 4, 6, 8, 9, 10, 12

Constructive Proofs of Existence Existential Statement Truth ∃x ∈D such that Q(x) Q(x) is true for at least one x in D. Constructive proof demonstrates the existence by providing a method for creating the object under proof, Q(x).

Example Constructive proofs of existence Prove: There is an integer n that can be written in two ways as a sum of two prime numbers. (Note for ∃proof you need only one example of truth.) Can you find an example of n that makes the statement true? Solution: Let n 10. Then 3 + 7 = 5 + 5 (true) Suppose that r and s are integers. Prove: ∃an integer k such that 22r + 18s = 2k. Solution: Let k = 11r + 9s. Then 2k = 2(11r + 9s) by distributive law 2k = 22r + 18s.

Nonconstructive Proof of Existence Nonconstructive proof involves showing that the existence of a value of x that makes Q(x) true is guaranteed by an axiom or a prior proof or that there is no such x leads to a contradiction.

Disproving Universal by Counterexample ∀x in D, if P(x) then Q(x) must be true for all x Counterexample ∃x in D such that P(x) and ~Q(x) must find a x that makes P(x) true and Q(x) false Disproof by Counterexample To disprove a statement of the form “∀x in D, if P(x) then Q(x),” find a value of x in D for which P(x) is true and Q(x) is false. Such an x is called a counterexample.

Example Disprove ∀real numbers a and b, if a2 = b2 then a = b P is a2 = b2 , Q is a = b find a case where P is true and Q is false will disprove the universal statement. a = 1 and b = -1, P is true and Q is false, hence disproved

Proving Universal Statements Universal: ∀x in D, if P(x) then Q(x) Proof by exhaustion can be used if D is finite and small. This proof requires you to test every x in D. Proof by exhaustion can be applied to P(x) too. When there are only a finite set of elements that satisfy P(x) then exhaustion can be employed.

Example Method of exhaustion for a finite P(x) ∀n ∈ Z, if n is even and 4≤n≤30, then n can be written as a sum of two prime numbers P(n) ∈ (4, 6, 8, 10, 12, … , 28, 30) Q – a sum of two prime numbers Solution 4 = 2+2 6=3+3 8=3+5 10=5+5 12=5+7 14=3+11 16=3+13 18=5+13 20=7+13 …

Proving Universal Statements Method of Generalizing from the Generic Particular To show that every element of a domain satisfies a certain property, suppose x is a particular but arbitrarily chosen element of the domain, and show that x satisfies the property.

Example Math Trick: Pick a number, add 5, multiply by 4, subtract 6, divide by 2 and subtract twice the original number. result = 7 x is the particular because it represents a single quantity x is also the arbitrarily chosen or generic because it can represent any number.

Proving Universal Statements Method of Direct Proof application of generalizing from the generic particular with the conditional, if P(x) then Q(x). ∀x in D, if P(x) then Q(x), you suppose x is a particular but arbitrarily chosen element of D that satisfies P(x), and then you show that x satisfies Q(x). Suppose x∈D and P(x) Show that conclusion, Q(x), is true

Example Prove that the sum of any two even integers is even. (formal) ∀integers m and n, if m and n are even then m+n is even. Starting point: Suppose m and n are particular but arbitrarily chosen integers that are even. To Show: m + n is even m = 2r for some integer r, n = 2s for some integer s m + n = 2r + 2s 2(r + s) = 2 k , where k is (r+s) by definition 2(r+s)=2k is even hence, m + n is even (QED) Theorem 3.1.1 “ the sum of any two integers is even”

Writing Proofs of Universal Statements Copy the statement of the theorem to be proved. Clearly mark beginning of proof with Proof. Make your proof self contained. identify each variable and initialize variables Write your proof in complete sentences. use of shorthand is allowed, e.g. Then m+n = 2r+2s Give a reason for each assertion. by hypothesis, by definition of, by theorem Use words to make logic arguments clear. Therefore, It follows, Hence, Then, Thus, etc.

Getting Proofs Started Write the first sentence of a proof “starting point” and the last sentence of a proof “conclusion to be shown”. Example: Every complete, bipartite graph is connected (formal) ∀graphs G, if G is complete and bipartite, then G is connected. Starting Point: Suppose G is a graph such that G is complete and bipartite. Conclusion to be shown: G is connected The proof will have the first and last sentences: First: Suppose G is a graph such that G is complete and bipartite. Last: Therefore G is connected.

Disproving an Existential Statement Negation of existential is universal statement, so to prove an existential false you must prove its (negation) universal true.

Example There is a positive integer n such that n2 + 3n + 2 is prime. (negation) For all positive integers n, n2 + 3n + 2 is not prime. Proof Suppose n is any positive integer. We can factor n2 + 3n + 2 to obtain n2 + 3n + 2 = (n+1) (n+2). We know that n+1 and n+2 are integers (b/c they are sums of integers) and n+1 > 1 and n+2 > 1. Thus n2 + 3n + 2 is a product of two integers greater than 1, and so n2 + 3n + 2 is not prime (by definition of primes).