Blind Search by Prof. Jean-Claude Latombe

Slides:



Advertisements
Similar presentations
Classic AI Search Problems
Advertisements

Artificial Intelligence Problem Solving Eriq Muhammad Adams
Lecture 3: Uninformed Search
Problem Solving and Search Andrea Danyluk September 9, 2013.
Problem Solving Agents A problem solving agent is one which decides what actions and states to consider in completing a goal Examples: Finding the shortest.
1 Lecture 3 Uninformed Search. 2 Uninformed search strategies Uninformed: While searching you have no clue whether one non-goal state is better than any.
Solving Problems by Searching Currently at Chapter 3 in the book Will finish today/Monday, Chapter 4 next.
Uninformed (also called blind) search algorithms) This Lecture Chapter Next Lecture Chapter (Please read lecture topic material before.
Properties of breadth-first search Complete? Yes (if b is finite) Time? 1+b+b 2 +b 3 +… +b d + b(b d -1) = O(b d+1 ) Space? O(b d+1 ) (keeps every node.
CS 480 Lec 3 Sept 11, 09 Goals: Chapter 3 (uninformed search) project # 1 and # 2 Chapter 4 (heuristic search)
Blind Search1 Solving problems by searching Chapter 3.
Search Strategies Reading: Russell’s Chapter 3 1.
May 12, 2013Problem Solving - Search Symbolic AI: Problem Solving E. Trentin, DIISM.
1 Blind (Uninformed) Search (Where we systematically explore alternatives) R&N: Chap. 3, Sect. 3.3–5.
Solving Problem by Searching Chapter 3. Outline Problem-solving agents Problem formulation Example problems Basic search algorithms – blind search Heuristic.
1 Lecture 3 Uninformed Search. 2 Uninformed search strategies Uninformed: While searching you have no clue whether one non-goal state is better than any.
Implementation and Evaluation of Search Methods. Use a stack data structure. 1. Push root node of tree on the stack. 2. Pop the top node off the stack.
Touring problems Start from Arad, visit each city at least once. What is the state-space formulation? Start from Arad, visit each city exactly once. What.
Artificial Intelligence for Games Uninformed search Patrick Olivier
14 Jan 2004CS Blind Search1 Solving problems by searching Chapter 3.
Artificial Intelligence (CS 461D)
Search Strategies CPS4801. Uninformed Search Strategies Uninformed search strategies use only the information available in the problem definition Breadth-first.
Artificial Intelligence Lecture No. 7 Dr. Asad Safi ​ Assistant Professor, Department of Computer Science, COMSATS Institute of Information Technology.
Artificial Intelligence for Games Depth limited search Patrick Olivier
14 Jan 2004CS Blind Search1 Solving problems by searching Chapter 3.
CS 380: Artificial Intelligence Lecture #3 William Regli.
Review: Search problem formulation
Problem Solving by Searching Copyright, 1996 © Dale Carnegie & Associates, Inc. Chapter 3 Spring 2004.
Searching the search space graph
Search I Tuomas Sandholm Carnegie Mellon University Computer Science Department [Read Russell & Norvig Chapter 3]
Artificial Intelligence Chapter 3: Solving Problems by Searching
1 Lecture 3 Uninformed Search. 2 Complexity Recap (app.A) We often want to characterize algorithms independent of their implementation. “This algorithm.
Blind Search-Part 2 Ref: Chapter 2. Search Trees The search for a solution can be described by a tree - each node represents one state. The path from.
CS 188: Artificial Intelligence Spring 2006 Lecture 2: Queue-Based Search 8/31/2006 Dan Klein – UC Berkeley Many slides over the course adapted from either.
1 Lecture 3 Uninformed Search
Lecture 3 Uninformed Search.
Review: Search problem formulation Initial state Actions Transition model Goal state (or goal test) Path cost What is the optimal solution? What is the.
1 Problem Solving and Searching CS 171/271 (Chapter 3) Some text and images in these slides were drawn from Russel & Norvig’s published material.
Problem Solving and Search Andrea Danyluk September 11, 2013.
CS 440 / ECE 448 Introduction to Artificial Intelligence Spring 2010 Lecture #3 Instructor: Eyal Amir Grad TAs: Wen Pu, Yonatan Bisk Undergrad TAs: Sam.
Artificial Intelligence
1 Solving Problems by Searching (Blindly) R&N: Chap. 3 (many of these slides borrowed from Stanford’s AI Class)
Vilalta&Eick:Uninformed Search Problem Solving By Searching Introduction Solutions and Performance Uninformed Search Strategies Avoiding Repeated States/Looping.
For Friday Finish reading chapter 4 Homework: –Lisp handout 4.
For Monday Read chapter 4, section 1 No homework..
Lecture 3: Uninformed Search
SOLVING PROBLEMS BY SEARCHING Chapter 3 August 2008 Blind Search 1.
A General Introduction to Artificial Intelligence.
1 Solving problems by searching Chapter 3. Depth First Search Expand deepest unexpanded node The root is examined first; then the left child of the root;
Uninformed Search ECE457 Applied Artificial Intelligence Spring 2007 Lecture #2.
Goal-based Problem Solving Goal formation Based upon the current situation and performance measures. Result is moving into a desirable state (goal state).
Uninformed search strategies A search strategy is defined by picking the order of node expansion Uninformed search strategies use only the information.
Problem Solving as Search. Problem Types Deterministic, fully observable  single-state problem Non-observable  conformant problem Nondeterministic and/or.
Uninformed Search Methods
Implementation: General Tree Search
Solving problems by searching A I C h a p t e r 3.
1 CS B551: Elements of Artificial Intelligence Instructor: Kris Hauser
Blind Search Russell and Norvig: Chapter 3, Sections 3.4 – 3.6 CS121 – Winter 2003.
Search Part I Introduction Solutions and Performance Uninformed Search Strategies Avoiding Repeated States Partial Information Summary.
Brian Williams, Fall 041 Analysis of Uninformed Search Methods Brian C. Williams Sep 21 st, 2004 Slides adapted from: Tomas Lozano Perez,
Chapter 3 Solving problems by searching. Search We will consider the problem of designing goal-based agents in observable, deterministic, discrete, known.
Artificial Intelligence Solving problems by searching.
Chapter 3 (Part-II) Section 3.4, 3.5, 3.6 Uninformed Search.
Lecture 3 Problem Solving through search Uninformed Search
Lecture 3: Uninformed Search
Uninformed Search Strategies
Artificial Intelligence Solving problems by searching
Russell and Norvig: Chapter 3, Sections 3.4 – 3.6
Searching for Solutions
Presentation transcript:

Blind Search by Prof. Jean-Claude Latombe Russell and Norvig: Chapter 3, Sections 3.4 – 3.6 Slides adapted from: robotics.stanford.edu/~latombe/cs121/2003/home.htm by Prof. Jean-Claude Latombe

Blind Search Depth first search Breadth first search Iterative deepening No matter where the goal is, these algorithms will do the same thing.

Depth-First 1 fringe

Depth-First 1 2 fringe

Depth-First 1 2 3 fringe

Breadth First 1 fringe

Breadth First 1 2 fringe

Breadth First 1 3 2 fringe

Breadth First 1 3 2 4 fringe

Generic Search Algorithm Path search(start, operators, is_goal) { fringe = makeList(start); while (state=fringe.popFirst()) { if (is_goal(state)) return pathTo(state); S = successors(state, operators); fringe = insert(S, fringe); } return NULL; Depth-first: insert=prepend; Breadth-first: insert=append

Performance Measures of Search Algorithms Completeness Is the algorithm guaranteed to find a solution when there is one? Optimality Is this solution optimal? Time complexity How long does it take? Space complexity How much memory does it require?

Important Parameters Maximum number of successors of any state  branching factor b of the search tree Minimal length of a path in the state space between the initial and a goal state  depth d of the shallowest goal node in the search tree

Evaluation of Breadth-first Search b: branching factor d: depth of shallowest goal node Complete Optimal if step cost is 1 Number of nodes generated: 1 + b + b2 + … + bd = (bd+1-1)/(b-1) = O(bd) Time and space complexity is O(bd)

Big O Notation g(n) is in O(f(n)) if there exist two positive constants a and N such that: for all n > N, g(n)  af(n)

Time and Memory Requirements #Nodes Time Memory 2 111 .01 msec 11 Kbytes 4 11,111 1 msec 1 Mbyte 6 ~106 1 sec 100 Mb 8 ~108 100 sec 10 Gbytes 10 ~1010 2.8 hours 1 Tbyte 12 ~1012 11.6 days 100 Tbytes 14 ~1014 3.2 years 10,000 Tb Assumptions: b = 10; 1,000,000 nodes/sec; 100bytes/node

Evaluation of Depth-first Search b: branching factor d: depth of shallowest goal node m: maximal depth of a leaf node Complete only for finite search tree Not optimal Number of nodes generated: 1 + b + b2 + … + bm = O(bm) Time complexity is O(bm) Space complexity is O(bm) or O(m)

Depth-Limited Strategy Depth-first with depth cutoff k (maximal depth below which nodes are not expanded) Three possible outcomes: Solution Failure (no solution) Cutoff (no solution within cutoff)

Iterative Deepening Strategy Repeat for k = 0, 1, 2, …: Perform depth-first with depth cutoff k Complete Optimal if step cost =1 Space complexity is: O(bd) or O(d) Time complexity is: (d+1)(1) + db + (d-1)b2 + … + (1) bd = O(bd) Same as BFS! WHY???

Calculation db + (d-1)b2 + … + (1) bd = bd + 2bd-1 + 3bd-2 +… + db  bd(Si=1,…, ib(1-i)) = bd (b/(b-1))2

Comparison of Strategies Breadth-first is complete and optimal, but has high space complexity Bad when branching factor is high Depth-first is space efficient, but neither complete nor optimal Bad when search depth is infinite Iterative deepening is asymptotically optimal

Uniform-Cost Strategy Each step has some cost   > 0. The cost of the path to each fringe node N is g(N) =  costs of all steps. The goal is to generate a solution path of minimal cost. The queue FRINGE is sorted in increasing cost. S S G A B C 5 1 15 10 1 A 5 B 15 C G 11 G 10

Repeated States No Few Many 1 2 3 4 5 6 7 8 search tree is finite 8-queens No assembly planning Few 1 2 3 4 5 6 7 8 8-puzzle and robot navigation Many search tree is finite search tree is infinite

Avoiding Repeated States Requires comparing state descriptions Breadth-first strategy: Keep track of all generated states If the state of a new node already exists, then discard the node

Avoiding Repeated States Depth-first strategy: Solution 1: Keep track of all states associated with nodes in current path If the state of a new node already exists, then discard the node  Avoids loops Solution 2: Keep track of all states generated so far If the state of a new node has already been generated, then discard the node  Space complexity of breadth-first

Summary Search strategies: breadth-first, depth-first, and variants Evaluation of strategies: completeness, optimality, time and space complexity Avoiding repeated states