Zhengjin 1 2015-5-9 Graphs: Adjacency Matrix ● Example: 1 24 3 a d bc A1234 1 2 3 ?? 4.

Slides:



Advertisements
Similar presentations
Comp 122, Fall 2004 Elementary Graph Algorithms. graphs Lin / Devi Comp 122, Fall 2004 Graphs  Graph G = (V, E) »V = set of vertices »E = set of.
Advertisements

1 Graphs Traversals In many graph problems, we need to traverse the vertices of the graph in some order Analogy: Binary tree traversals –Pre-order Traversal.
CS 473Lecture 141 CS473-Algorithms I Lecture 14-A Graph Searching: Breadth-First Search.
Graph Traversals. For solving most problems on graphs –Need to systematically visit all the vertices and edges of a graph Two major traversals –Breadth-First.
ALGORITHMS THIRD YEAR BANHA UNIVERSITY FACULTY OF COMPUTERS AND INFORMATIC Lecture eight Dr. Hamdy M. Mousa.
More Graphs COL 106 Slides from Naveen. Some Terminology for Graph Search A vertex is white if it is undiscovered A vertex is gray if it has been discovered.
CS 473Lecture 141 CS473-Algorithms I Lecture 14-A Graph Searching: Breadth-First Search.
Applications Data Structures and Algorithms (60-254)
David Luebke 1 5/9/2015 CS 332: Algorithms Graph Algorithms.
Graph Searching CSE 373 Data Structures Lecture 20.
Graph Traversals Visit vertices of a graph G to determine some property: Is G connected? Is there a path from vertex a to vertex b? Does G have a cycle?
Graphs Searching. Graph Searching Given: a graph G = (V, E), directed or undirected Goal: methodically explore every vertex and every edge Ultimately:
Breadth First Search. Two standard ways to represent a graph –Adjacency lists, –Adjacency Matrix Applicable to directed and undirected graphs. Adjacency.
Graph Searching (Graph Traversal) Algorithm Design and Analysis Week 8 Bibliography: [CLRS] – chap 22.2 –
CS 3343: Analysis of Algorithms Lecture 24: Graph searching, Topological sort.
1 Graph Programming Gordon College. 2 Graph Basics A graph G = (V, E) –V = set of vertices, E = set of edges –Dense graph: |E|  |V| 2 ; Sparse graph:
A Introduction to Computing II Lecture 15: Searching Graphs II Fall Session 2000.
Graph Traversals Visit vertices of a graph G to determine some property: Is G connected? Is there a path from vertex a to vertex b? Does G have a cycle?
Graph traversals / cutler1 Graph traversals Breadth first search Depth first search.
David Luebke 1 5/20/2015 CS 332: Algorithms Graph Algorithms.
Lecture 19: Shortest Paths Shang-Hua Teng. Weighted Directed Graphs Weight on edges for distance
Lecture 14: Graph Algorithms Shang-Hua Teng. Undirected Graphs A graph G = (V, E) –V: vertices –E : edges, unordered pairs of vertices from V  V –(u,v)
CSE 780 Algorithms Advanced Algorithms Graph Algorithms Representations BFS.
 Last lesson  Graphs  Today  Graphs (Implementation, Traversal)
CISC220 Fall 2009 James Atlas Nov 13: Graphs, Line Intersections.
1 7/2/2015 ITCS 6114 Graph Algorithms. 2 7/2/2015 Graphs ● A graph G = (V, E) ■ V = set of vertices ■ E = set of edges = subset of V  V ■ Thus |E| =
1 7/3/2015 ITCS 6114 Graph Algorithms. 2 7/3/2015 Depth-First Search ● Depth-first search is another strategy for exploring a graph ■ Explore “deeper”
Tirgul 7 Review of graphs Graph algorithms: – BFS (next tirgul) – DFS – Properties of DFS – Topological sort.
David Luebke 1 8/7/2015 CS 332: Algorithms Graph Algorithms.
1  Introduction to Graph Data Structure  Applications  Graph Searching  Minimum Spanning Trees  Shortest Path problems.
David Luebke 1 9/15/2015 CS 332: Algorithms Topological Sort Minimum Spanning Trees.
David Luebke 1 10/1/2015 CS 332: Algorithms Topological Sort Minimum Spanning Tree.
COSC 3101A - Design and Analysis of Algorithms 10
Spring 2015 Lecture 10: Elementary Graph Algorithms
Sept Elementary Graph Algorithms Graph representation Graph traversal -Breadth-first search -Depth-first search Parenthesis theorem.
CSC 413/513: Intro to Algorithms Graph Algorithms DFS.
1 Chapter 22 Elementary Graph Algorithms. 2 Introduction G=(V, E) –V = vertex set –E = edge set Graph representation –Adjacency list –Adjacency matrix.
CSC 201: Design and Analysis of Algorithms Lecture # 18 Graph Algorithms Mudasser Naseer 1 12/16/2015.
CSC 413/513: Intro to Algorithms Graph Algorithms.
Graph Algorithms Searching. Review: Graphs ● A graph G = (V, E) ■ V = set of vertices, E = set of edges ■ Dense graph: |E|  |V| 2 ; Sparse graph: |E|
Analysis of Algorithms CS 477/677 Instructor: Monica Nicolescu Lecture 20.
David Luebke 1 1/6/2016 CS 332: Algorithms Graph Algorithms.
Mudasser Naseer 1 1/9/2016 CS 201: Design and Analysis of Algorithms Lecture # 17 Elementary Graph Algorithms (CH # 22)
CS 2133: Algorithms Intro to Graph Algorithms (Slides created by David Luebke)
David Luebke 1 1/25/2016 CSE 207: Algorithms Graph Algorithms.
Liaquat Majeed Sheikh 1 1/25/2016 Graph Algorithms.
COSC 3101A - Design and Analysis of Algorithms 9 Knapsack Problem Huffman Codes Introduction to Graphs Many of these slides are taken from Monica Nicolescu,
Graphs & Paths Presentation : Part II. Graph representation Given graph G = (V, E). May be either directed or undirected. Two common ways to represent.
Shahed University Dr. Shahriar Bijani May  A path is a sequence of vertices P = (v 0, v 1, …, v k ) such that, for 1 ≤ i ≤ k, edge (v i – 1, v.
1 Algorithms CSCI 235, Fall 2015 Lecture 32 Graphs I.
Chapter 05 Introduction to Graph And Search Algorithms.
G RAPH A LGORITHMS Dr. Tanzima Hashem Assistant Professor CSE, BUET.
G RAPH A LGORITHMS Dr. Tanzima Hashem Assistant Professor CSE, BUET.
CSC317 1 At the same time: Breadth-first search tree: If node v is discovered after u then edge uv is added to the tree. We say that u is a predecessor.
CS 3343: Analysis of Algorithms Lecture 24: Graph searching, Topological sort.
64 Algorithms analysis and design BY Lecturer: Aisha Dawood.
Graphs – Breadth First Search
CS 201: Design and Analysis of Algorithms
Elementary Graph Algorithms
CSC317 Graph algorithms Why bother?
Graph Algorithms "A charlatan makes obscure what is clear; a thinker makes clear what is obscure. " - Hugh Kingsmill.
Elementary Graph Algorithms
CS 3343: Analysis of Algorithms
Graphs A graph G = (V, E) V = set of vertices, E = set of edges
Intro to Graph Algorithms (Slides originally created by David Luebke)
Graph Representation (23.1/22.1)
Basic Graph Algorithms
Graph Algorithms "A charlatan makes obscure what is clear; a thinker makes clear what is obscure. " - Hugh Kingsmill CLRS, Sections 22.2 – 22.4.
CSC 325: Algorithms Graph Algorithms David Luebke /24/2019.
Algorithms CSCI 235, Spring 2019 Lecture 32 Graphs I
Presentation transcript:

zhengjin Graphs: Adjacency Matrix ● Example: a d bc A ?? 4

zhengjin Breadth-First Search ● “Explore” a graph, turning it into a tree ■ One vertex at a time ■ Expand frontier of explored vertices across the breadth of the frontier ● Builds a tree over the graph ■ Pick a source vertex to be the root ■ Find (“discover”) its children, then their children, etc.

zhengjin Breadth-First Search ● Again will associate vertex “colors” to guide the algorithm ■ White vertices have not been discovered ○ All vertices start out white ■ Grey vertices are discovered but not fully explored ○ They may be adjacent to white vertices ■ Black vertices are discovered and fully explored ○ They are adjacent only to black and gray vertices ● Explore vertices by scanning adjacency list of grey vertices

zhengjin Breadth-First Search BFS(G, s) { initialize vertices; Q = {s};// Q is a queue (duh); initialize to s while (Q not empty) { u = RemoveTop(Q); for each v  u->adj { if (v->color == WHITE) v->color = GREY; v->d = u->d + 1; v->p = u; Enqueue(Q, v); } u->color = BLACK; } What does v->p represent? What does v->d represent?

zhengjin Breadth-First Search: Example         rstu vwxy

zhengjin Breadth-First Search: Example   0      rstu vwxy s Q:

zhengjin Breadth-First Search: Example 1  0 1     rstu vwxy w Q: r

zhengjin Breadth-First Search: Example 1    rstu vwxy r Q: tx

zhengjin Breadth-First Search: Example   rstu vwxy Q: txv

zhengjin Breadth-First Search: Example  rstu vwxy Q: xvu

zhengjin Breadth-First Search: Example rstu vwxy Q: vuy

zhengjin Breadth-First Search: Example rstu vwxy Q: uy

zhengjin Breadth-First Search: Example rstu vwxy Q: y

zhengjin Breadth-First Search: Example rstu vwxy Q: Ø

zhengjin BFS: The Code Again BFS(G, s) { initialize vertices; Q = {s}; while (Q not empty) { u = RemoveTop(Q); for each v  u->adj { if (v->color == WHITE) v->color = GREY; v->d = u->d + 1; v->p = u; Enqueue(Q, v); } u->color = BLACK; } What will be the running time? Touch every vertex: O(V) u = every vertex, but only once (Why?) So v = every vertex that appears in some other vert’s adjacency list Total running time: O(V+E)

zhengjin Breadth-First Search: Properties ● BFS calculates the shortest-path distance to the source node ■ Shortest-path distance  (s,v) = minimum number of edges from s to v, or  if v not reachable from s ● BFS builds breadth-first tree, in which paths to root represent shortest paths in G ■ Thus can use BFS to calculate shortest path from one vertex to another in O(V+E) time