Chapter 23: Patents and Patent Policy1 Patents and Patent Policy.

Slides:



Advertisements
Similar presentations
12 MONOPOLY CHAPTER.
Advertisements

Economics: Principles in Action
Strategic Pricing: Theory, Practice and Policy Professor John W. Mayo
1 Predatory Conduct. 2 Predatory conduct is the implementation of a strategy designed specifically to deter rival firms from competing in a market. To.
office hours: 8:00AM – 8:50AM tuesdays LUMS C85
© 2009 Pearson Education Canada 16/1 Chapter 16 Game Theory and Oligopoly.
Static Games and Cournot Competition
Regulating a Monopolist Monopolist choose output q m,whereas the efficient output is q w. Regulation will be needed to avoid the former result. However,
12 Prepared by: Fernando Quijano and Yvonn Quijano © 2004 Prentice Hall Business PublishingPrinciples of Economics, 7/eKarl Case, Ray Fair Monopoly.
Managerial Economics & Business Strategy
Research and Development Part 1: Innovations and Patents.
1 Microeconomic Foundations of the Economic Theory of Innovation: Competition and Innovation B. Verspagen, 2005 The Economics of Technological Change Chapter.
Michael R. Baye, Managerial Economics and Business Strategy, 3e. ©The McGraw-Hill Companies, Inc., 1999 Managerial Economics & Business Strategy Chapter.
Managerial Economics & Business Strategy
1 Welcome to EC 209: Managerial Economics- Group A By: Dr. Jacqueline Khorassani Week Ten.
Basic Oligopoly Models
Pricing Strategies for Firms with Market Power
Lecture 2: Porter’s Five Forces ©2009 by Marvin Lieberman How Competition Shapes the Creation and Distribution of Economic Value Introduction to Business.
Chapter 7, Consumers, Producers, and the Efficiency of Markets
Research and Development Part 2: Competition and R&D.
CHAPTER 9 Basic Oligopoly Models Copyright © 2014 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written.
Monopolistic Competition
Ch. 12: Monopoly Causes of monopoly
© Suzanne Scotchmer 2007 Contents May Be Used Pursuant to Creative Commons Attribution-NoDerivs-NonCommercial Common Deed 1.0Attribution-NoDerivs-NonCommercial.
Static Games and Cournot Competition
ANNOUNCEMENTS Review class: Monday, December 13 4:15-5:15, LC6 Final Exam: Friday, December 17 10:30-12:30, LC1 80 multiple choice choice questions Chapts.
Ch. 12: Monopoly  Causes of monopoly  Monopoly pricing and output determination  Performance and efficiency of single-price monopoly and competition.
I. A Simple Model. Players: Sellers, I and E, and a consumer Period 1: Seller I and the buyer can make an exclusive contract. Period 2: Seller E decides.
12 MONOPOLY CHAPTER.
Monopoly vs Perfect Competition. Allocative efficiency Society can maximize its net benefit by allocating just enough resources to produce the quantity.
12 MONOPOLY CHAPTER.
1 Strategic Investment and Non-Price Competition.
LUBS1940: Topic 5 Perfect Competition and Monopoly Market Structures
Managerial Economics & Business Strategy
Economics: Principles in Action
MONOPOLISTIC COMPETITION
Chapter 12 Price Discrimination
Chapter 24: Monopoly Copyright © 2013 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin 13e.
Consumer and Producer Surplus
Research and Development
Copyright © 2004 South-Western Monopoly vs. Competition While a competitive firm is a price taker, a monopoly firm is a price maker. A firm is considered.
Econ Examples Plus Multimedia Welcome to this multimedia example. To navigate through this example you will need to click the appropriate green arrows.
Monopolistic Competition
1 Monopoly and Antitrust Policy Chapter IMPERFECT COMPETITION AND MARKET POWER imperfectly competitive industry An industry in which single firms.
Monopolistic Competition and Oligopoly
Chapter Ten Monopolies. Copyright © by Houghton Mifflin Company, Inc. All rights reserved A Model of Monopoly Monopoly: One firm in an industry.
Chapter 9: Static Games and Cournot Competition 1 Static Games and Cournot Competition.
Monopolistic Competition Markets that have some features of competition and some features of monopoly. Many sellers Product differentiation Free entry.
MONOPOLY. Monopoly Recall characteristics of a perfectly competitive market: –many buyers and sellers –market participants are “price takers” –economic.
PowerPoint Slides prepared by: Andreea CHIRITESCU Eastern Illinois University Monopoly 1 © 2012 Cengage Learning. All Rights Reserved. May not be copied,
Unit 4, Lesson 10 Competition AOF Business Economics Copyright © 2008–2011 National Academy Foundation. All rights reserved.
Monopoly CHAPTER 12. After studying this chapter you will be able to Explain how monopoly arises and distinguish between single-price monopoly and price-discriminating.
Chapter 13: Predatory Conduct: recent developments 1 Predatory Conduct: Recent Developments.
MONOPOLY 12 CHAPTER. Objectives After studying this chapter, you will able to  Explain how monopoly arises and distinguish between single-price monopoly.
PPT accompaniment for the Consortium's Supply, Demand, and Market Equilibrium.
Monopolistic Competition Economics 101. Definition  Monopolistic Competition  Many firms selling products that are similar but not identical.  Markets.
Chapter 22: The Competitive Firm Copyright © 2013 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin 13e.
Monopoly Chapter 7 Copyright © 2011 by The McGraw-Hill Companies, Inc. All Rights Reserved.McGraw-Hill/Irwin.
Monopoly 15. Monopoly A firm is considered a monopoly if... it is the sole seller of its product. it is the sole seller of its product. its product does.
I. A Simple Model. Players: Sellers, I and E, and a consumer Period 1: Seller I and the buyer can make an exclusive contract. Period 2: Seller E decides.
Lecture 14 Intellectual property, patent policy Chapter 23.
Research and Development
Microeconomics 1000 Lecture 13 Oligopoly.
Patents and Patent Policy
Patents and Patent Policy
Static Games and Cournot Competition
Unit 4: Imperfect Competition
Static Games and Cournot Competition
Patents and Patent Policy
Economics: Principles in Action
Presentation transcript:

Chapter 23: Patents and Patent Policy1 Patents and Patent Policy

Chapter 23: Patents and Patent Policy2 Introduction Information is a public good Non-rivalry in consumption –If Eli Lilly tells Merck how to make Prozac the information does not leave Lilly –Marginal cost of sharing info, e.g., the Prozac formula, is zero –Allocationally efficient price = marginal cost = 0 Non-excludability of people who don’t pay for information –Easy to copy or reverse engineer products –Trade secrets are hard to keep –Effective price is zero If price of information is zero, no incentive to produce information or develop new products—no dynamic efficiency Patent Policy must balance the demands of allocational and dynamic efficiency

Chapter 23: Patents and Patent Policy3 Optimal Patent Length Patents may be used to protect innovators and make the economy more dynamically efficient Temporarily create monopoly power (bad) Encourage creation of new products (good) Two central questions of patent policy How long should patent last How wide a range of substitutes should patent span? Optimal Patent Length No simple answer such as 14, 17 or 21 years Nordhaus (1969) classic model illustrates key factors in determining optimal patent length

Chapter 23: Patents and Patent Policy4 Optimal Patent Length (cont.) Competitive industry with constant cost c –Firm can conduct R&D of intensity x at cost r(x) that rises with x –Successful R&D lowers cost to c – x $/unit = p Quantity c Q0CQ0C c-x QTCQTC A B Demand

Chapter 23: Patents and Patent Policy5 Optimal Patent Length (cont.) Assume that patent lasts for T years. –During life of patent, innovator earns monopoly profit area A –When patent expires in T years, consumers gain surplus A plus area B (formerly static deadweight loss) Trick is to choose length T that gives A to producers for a long enough time to encourage high R&D intensity x and therefore cost savings c – x, incentives to producers but that does not delay the realization of B for too long a time Incentive to producers –Size of A research intensity x –Present value of A for T year is V(x,T) –Cost of research activity is r(x) –Net gain of R&D if patent lasts T years is: V(x,T) – r(x) –Firms will choose x that maximizes this gain x*(T)

Chapter 23: Patents and Patent Policy6 Optimal Patent Length (cont.) Patent Office understands that for any value of T, firms will optimally choose x(T) research intensity –When patent expires in T years, areas A and B are realized as consumer surplus forever. The present value of this surplus that starts in T years is CS(x,T). –Patent policy goal is to maximize net total surplus recognizing that its choice of T determines the amount of R&D intensity x*(T). That is, patent policy aims to maximize: –V[x*(T),T] – r[x(T)] + CS[x*(T)] –This is a single equation in T and so standard maximization techniques apply

Chapter 23: Patents and Patent Policy7 Optimal Patent Length (cont.) Insights of the Nordhaus model –1. Optimal patent length is positive but finite If T = 0, firms will not do any R&D As T gets larger –Firms do more R&D – but effect diminishes because the cost of more research intensity r(x) rises & because extra profit in last years of a patent is discounted severely – As T gets larger, society has to wait longer to gain the welfare triangle B. At some point, this cost of dominates the increment to x. T is finite.

Chapter 23: Patents and Patent Policy8 Optimal Patent Length (cont.) Insights of the Nordhaus model (cont.) –point, this cost of dominates the increment to x. T is finite. –2. Optimal patent length is shorter the more elastic is demand The more elastic demand is, the greater the static welfare loss B –3. Optimal patent length is shorter the lower the cost of R&D, r(x) Profit increases linearly with the size of the cost reduction but the welfare loss increases quadratically. As the equilibrium cost reduction rises, so does the loss from keeping T large

Chapter 23: Patents and Patent Policy9 Patent Length and Breadth Optimal patent length may depend on how broad patent protection is –If patents are broad, length should probably be limited because have broad and long patents would confer too much monopoly power –Broad patent protection has the advantage that it prevents minor alterations on the original invention [Klemperer (1990)] –Long patents may actually discourage innovation [Gallini (1992)]. With short patents, rivals can afford to wait until patent expires If patents are long, rivals cannot wait but will try to invent around the patent. The anticipation of this copycat activity may depress innovation –Denicolo (1996) argues that optimal patent length and breadth depends on market conditions—The more competitive an industry the more long, narrow patents are desirable –Unfortunately, while the Denicolo argument may be rational, it is hard to implement a policy that doesn’t treat all firms the same.

Chapter 23: Patents and Patent Policy10 Patent Races Technological break-throughs have a winner-take-all feature—whoever discovers Prozac or invents a new good wins the patent and associated monopoly power whether they were first by a year or first by a week This winner-take-all feature makes R&D efforts a bit like a race—all that matters is finishing first What are the implications of patent races? Example: –Assume two firms, BMI and ECN –Developing a new product for which Demand is P = 100 – 2Q. –Product will be produced at constant marginal cost c = 50 –Development requires a lab and probability of successful development is 0.8 –Cost of lab is K

Chapter 23: Patents and Patent Policy11 Patent Races (cont.) Qualitatively, there are three possible outcomes: –Neither firm invests in a lab –One firm invests in a lab and the other doesn’t –Both firms invest in a lab If no firm invests, each gets 0 Suppose only one firm invests in a lab: – if successful, it will be a monopolist and earn an operating profit of $ –Since the probability of success is 0.8, the expected profit conditional upon spending K on the lab is 0.8*$ – K = $250 – K –This expected outcome is illustrated by the two off- diagonal elements in the payoff matrix below

Chapter 23: Patents and Patent Policy12 Patent Races (cont.) Suppose both firms invest in a lab. From BMI’s perspective there are three possible outcomes –It is not successful and so earns 0 operating profit. This happens with probability 0.2 –It is successful and ECN is not. In this case, it will be a monopolist and earn an operating profit of $ This happens with probability, 0.8*0.2 = The expected operating profit is therefore $50. –Both BMI and ECN are successful. In this case they each earn duopoly operating profits of $ This happens with probability, 0.8*0.8 = So the expected operating profit is $ –Taking all three outcomes together, the expected profit net of lab costs when both invest in a lab is $ – K –This is shown in the lower right diagonal of the payoff matrix below

Chapter 23: Patents and Patent Policy13 Patent Races (cont.) The Pay-Off Matrix BMI ECN No R&D Lab R&D Lab (0, 0)(0,$250 – K) ($250 – K, 0) ($ K, $ K) If K  $250, then no firm will invest in a lab. Even a monopolist cannot expect to cover lab costs this high. If $  K < $250, then the Nash Equilibrium is for one firm to invest in a lab. If both invested, at least one would want to change its decision. The issue here is which firm will do the investment. If K < $138.89, the Nash Equilibrium is for both firms to invest in a lab

Chapter 23: Patents and Patent Policy14 Patent Races (cont.) Patent races raise the possibility that R&D investment can either be excessive or insufficient –The possibility that it can be excessive is illustrated by the outcome in which both firms invest. When both invest, we either get no development (prob = 0.04); a monopoly (prob = 0.32) or a duopoly (0.64) –The expected operating profit in total is then: 0.32*$ *$ = $ –The expected consumer surplus is: 0.32* * = $ –So, the total expected surplus net of lab costs when both invest is:$ – 2K  $505 – 2K. –The expected surplus with just one lab is 0.8($ $156.25) – K = $375 – K. –Two labs are excessive if $375 – K > $505 – 2K, I.e., if K > $130

Chapter 23: Patents and Patent Policy15 Patent Races (cont.) The reason that R&D can be excessive is wasteful duplication. Each firm thinks only about its own potential gain and not about the fact that if both are successful (which is fairly likely given that the probability of a successful lab is 0.8) they will hurt each other’s profit However, there can also be too little investment. This is because firms do not consider the increased consumer surplus that successful development of a new product will generate

Chapter 23: Patents and Patent Policy16 “Sleeping” Patents Most firms have many patents including some that they never use. Similarly, many film studios buy the rights to books and plays but never produce them. Instead, these patents and copyrights are left dormant or sleeping. Why? The answer is that it is worth more to the incumbent monopolist to make sure that a rival does not enter than it is for the rival to acquire the patent or copyright and come in as a duopolist. Consider a market with demand: P = 100 – Q. –An incumbent monopolist with constant unit cost c I = $20 based on the firm’s unique technology –There is an alternative technology with constant cost c A = $30

Chapter 23: Patents and Patent Policy17 “Sleeping” Patents (cont.) The monopolist has a patent on the alternative process and can either sell it to its rival or let it sleep. Which will it do? –With existing low cost [c I = $20] technology, monopolist sets monopoly price of $60, sells 40 units and earns profit of $1,600 Suppose competition is Bertrand: If rival has patent and ability to produce at c A = $30, rival will earn no profit because it can’t compete with c I = $20 But rival’s presence will constrain monopolist to set P no higher than $30—Profit will fall to $700 CONCLUSION: If competition is Bertrand, the rival will not pay anything for it and it is worth $1,600 - $700 = $900 to the monopolist Monopolist will let the alternative technology patent sleep

Chapter 23: Patents and Patent Policy18 Sleeping Patents (cont.) What if competition is Cournot? Duopoly outcome with Cournot if : –Incumbent has cost c I = $20; Rival has cost c A = $30 –Incumbent output is 30; Rival output is 20 –Incumbent profit is $900; Rival profit is $400 If rival has access to the alternative technology, incumbent losest $1600 – $900 = $700 in profit Most rival gains is $400 So, as before, it is worth more to the incumbent to keep the patent on the alternative technology sleeping than it is to the rival to buy it out

Chapter 23: Patents and Patent Policy19 Patent Licensing Incumbents will prevent rival entrant access to alternative, high cost technology and keep it sleeping. But firms may license the best, low-cost technology Why? There is a difference between keeping new firms out versus competing with existing rivals. The profitability of licensing depends on –Nature of competition –Drastic versus non-drastic innovation

Chapter 23: Patents and Patent Policy20 Patent Licensing (cont.) Consider our previous example with demand given by P = 100 – Q –Imagine that we now start with 2 firms each with constant marginal cost of c A = $30 –The Cournot equilibrium results in each firm producing23.33 units Total Output is Q = Price is P = $ Profit to each firm is $ Now assume one firm develops new technology with unit cost c I = $20 We already know that the new equilibrium has the low- cost firm producing 30 units, selling at price P = $50 and earning profit of $900 while the high cost firms produces 20 units and earns profit of $400

Chapter 23: Patents and Patent Policy21 Patent Licensing (cont.) Now consider what happens if low cost firm licenses its technology to high cost firm for a fee of (just under) $10 per unit. This leaves the market outcome unchanged. The high cost firm can now produce at $20 per unit but also has to pay (nearly) $10 in licensing fees. Effectively, the high-cost firm still has a unit cost of $30 Accordingly, P = $50 and Q = 50 still holds with Q split 30 and 20 between the low-cost high-cost firm, respectively What’s different –Low cost firm still earns $900 in profit from its production –But it also picks up $10*20 = $200 in licensing fees –Licensing definitely pays off

Chapter 23: Patents and Patent Policy22 Patent Licensing (cont.) Licensing will not happen if competition were Bertrand When both firms have unit cost c A = $30, P = $30 & Q = 70 When one firm obtains c A = $20, its best strategy is to sell 70 units at $30 (or just under) and earn profit of $700 No licensing can improve on this –If it licenses for a fee of $10 per unit, –the market price will still be $30 –The two firms will split the market as before the innovation, each producing 35 units –The innovating firm will earn $350 from its own production –It will earn $350 from licensing –Total profit is $700 No incentive to license if competition is Bertrand

Chapter 23: Patents and Patent Policy23 Patent Licensing (cont.) Licensing will not happen if innovation is drastic –Drastic innovation permits firm to act as an unconstrained monopoly –No licensing can improve on this maximum monopoly profit When it does happen, licensing is good –It raises innovator’s profit –It expands output and consumer surplus Firms may be reluctant to license though because Licensee may use license to develop expertise while waiting for patent to expire Licensee may use license to reverse engineer and develop alternative low-cost technology Restricting competition among different licensees may be difficult