1 Graph Programming Gordon College. 2 Graph Basics A graph G = (V, E) –V = set of vertices, E = set of edges –Dense graph: |E|  |V| 2 ; Sparse graph:

Slides:



Advertisements
Similar presentations
Comp 122, Fall 2004 Elementary Graph Algorithms. graphs Lin / Devi Comp 122, Fall 2004 Graphs  Graph G = (V, E) »V = set of vertices »E = set of.
Advertisements

Tirgul 7 Review of graphs Graph algorithms: –DFS –Properties of DFS –Topological sort.
Introduction to Algorithms Second Edition by Cormen, Leiserson, Rivest & Stein Chapter 22.
Elementary Graph Algorithms Depth-first search.Topological Sort. Strongly connected components. Chapter 22 CLRS.
Graph Traversals. For solving most problems on graphs –Need to systematically visit all the vertices and edges of a graph Two major traversals –Breadth-First.
ALGORITHMS THIRD YEAR BANHA UNIVERSITY FACULTY OF COMPUTERS AND INFORMATIC Lecture eight Dr. Hamdy M. Mousa.
More Graphs COL 106 Slides from Naveen. Some Terminology for Graph Search A vertex is white if it is undiscovered A vertex is gray if it has been discovered.
David Luebke 1 5/9/2015 CS 332: Algorithms Graph Algorithms.
Graphs Breadth First Search & Depth First Search by Shailendra Upadhye.
Graphs Searching. Graph Searching Given: a graph G = (V, E), directed or undirected Goal: methodically explore every vertex and every edge Ultimately:
Zhengjin Graphs: Adjacency Matrix ● Example: a d bc A ?? 4.
Breadth First Search. Two standard ways to represent a graph –Adjacency lists, –Adjacency Matrix Applicable to directed and undirected graphs. Adjacency.
Graph Searching (Graph Traversal) Algorithm Design and Analysis Week 8 Bibliography: [CLRS] – chap 22.2 –
CS 3343: Analysis of Algorithms Lecture 24: Graph searching, Topological sort.
Graph Traversals Visit vertices of a graph G to determine some property: Is G connected? Is there a path from vertex a to vertex b? Does G have a cycle?
Graph traversals / cutler1 Graph traversals Breadth first search Depth first search.
Tirgul 11 DFS Properties of DFS Topological sort.
David Luebke 1 5/20/2015 CS 332: Algorithms Graph Algorithms.
UMass Lowell Computer Science Analysis of Algorithms Prof. Karen Daniels Spring, 2001 Makeup Lecture Chapter 23: Graph Algorithms Depth-First SearchBreadth-First.
Lecture 14: Graph Algorithms Shang-Hua Teng. Undirected Graphs A graph G = (V, E) –V: vertices –E : edges, unordered pairs of vertices from V  V –(u,v)
Lecture 15: Depth First Search Shang-Hua Teng. Graphs G= (V,E) B E C F D A B E C F D A Directed Graph (digraph) –Degree: in/out Undirected Graph –Adjacency.
1 7/2/2015 ITCS 6114 Graph Algorithms. 2 7/2/2015 Graphs ● A graph G = (V, E) ■ V = set of vertices ■ E = set of edges = subset of V  V ■ Thus |E| =
1 7/3/2015 ITCS 6114 Graph Algorithms. 2 7/3/2015 Depth-First Search ● Depth-first search is another strategy for exploring a graph ■ Explore “deeper”
David Luebke 1 8/7/2015 CS 332: Algorithms Graph Algorithms.
Review of Graphs A graph is composed of edges E and vertices V that link the nodes together. A graph G is often denoted G=(V,E) where V is the set of vertices.
November 6, Algorithms and Data Structures Lecture XI Simonas Šaltenis Aalborg University
David Luebke 1 9/15/2015 CS 332: Algorithms Topological Sort Minimum Spanning Trees.
David Luebke 1 10/1/2015 CS 332: Algorithms Topological Sort Minimum Spanning Tree.
COSC 3101A - Design and Analysis of Algorithms 10
Spring 2015 Lecture 10: Elementary Graph Algorithms
Sept Elementary Graph Algorithms Graph representation Graph traversal -Breadth-first search -Depth-first search Parenthesis theorem.
Elementary Graph Algorithms CLRS Chapter 22. Graph A graph is a structure that consists of a set of vertices and a set of edges between pairs of vertices.
CSC 413/513: Intro to Algorithms Graph Algorithms DFS.
Lecture 11 Algorithm Analysis Arne Kutzner Hanyang University / Seoul Korea.
1 Chapter 22 Elementary Graph Algorithms. 2 Introduction G=(V, E) –V = vertex set –E = edge set Graph representation –Adjacency list –Adjacency matrix.
Elementary Graph Algorithms Many of the slides are from Prof. Plaisted’s resources at University of North Carolina at Chapel Hill.
CSC 201: Design and Analysis of Algorithms Lecture # 18 Graph Algorithms Mudasser Naseer 1 12/16/2015.
CSC 413/513: Intro to Algorithms Graph Algorithms.
Graph Algorithms Searching. Review: Graphs ● A graph G = (V, E) ■ V = set of vertices, E = set of edges ■ Dense graph: |E|  |V| 2 ; Sparse graph: |E|
Chapter 22: Elementary Graph Algorithms
Analysis of Algorithms CS 477/677 Instructor: Monica Nicolescu Lecture 20.
David Luebke 1 1/6/2016 CS 332: Algorithms Graph Algorithms.
Mudasser Naseer 1 1/9/2016 CS 201: Design and Analysis of Algorithms Lecture # 17 Elementary Graph Algorithms (CH # 22)
Graph. Graphs G = (V,E) V is the vertex set. Vertices are also called nodes and points. E is the edge set. Each edge connects two different vertices.
CS 2133: Algorithms Intro to Graph Algorithms (Slides created by David Luebke)
David Luebke 1 1/25/2016 CSE 207: Algorithms Graph Algorithms.
Liaquat Majeed Sheikh 1 1/25/2016 Graph Algorithms.
Graphs & Paths Presentation : Part II. Graph representation Given graph G = (V, E). May be either directed or undirected. Two common ways to represent.
Shahed University Dr. Shahriar Bijani May  A path is a sequence of vertices P = (v 0, v 1, …, v k ) such that, for 1 ≤ i ≤ k, edge (v i – 1, v.
ALGORITHMS THIRD YEAR BANHA UNIVERSITY FACULTY OF COMPUTERS AND INFORMATIC Lecture nine Dr. Hamdy M. Mousa.
November 19, Algorithms and Data Structures Lecture XI Simonas Šaltenis Nykredit Center for Database Research Aalborg University
G RAPH A LGORITHMS Dr. Tanzima Hashem Assistant Professor CSE, BUET.
CSC317 1 At the same time: Breadth-first search tree: If node v is discovered after u then edge uv is added to the tree. We say that u is a predecessor.
Chapter 22: Elementary Graph Algorithms Overview: Definition of a graph Representation of graphs adjacency list matrix Elementary search algorithms breadth-first.
CS 3343: Analysis of Algorithms Lecture 24: Graph searching, Topological sort.
64 Algorithms analysis and design BY Lecturer: Aisha Dawood.
CS 201: Design and Analysis of Algorithms
Elementary Graph Algorithms
Chapter 22 Elementary Graph Algorithms
Topological Sort Minimum Spanning Tree
Depth-First Search Depth-first search is a strategy for exploring a graph Explore “deeper” in the graph whenever possible Edges are explored out of the.
Many slides here are based on E. Demaine , D. Luebke slides
Elementary Graph Algorithms
CS 3343: Analysis of Algorithms
Graphs A graph G = (V, E) V = set of vertices, E = set of edges
Intro to Graph Algorithms (Slides originally created by David Luebke)
Graphs Chapter 15 explain graph-based algorithms Graph definitions
CS6045: Advanced Algorithms
Graph Algorithms "A charlatan makes obscure what is clear; a thinker makes clear what is obscure. " - Hugh Kingsmill CLRS, Sections 22.2 – 22.4.
CSC 325: Algorithms Graph Algorithms David Luebke /24/2019.
Presentation transcript:

1 Graph Programming Gordon College

2 Graph Basics A graph G = (V, E) –V = set of vertices, E = set of edges –Dense graph: |E|  |V| 2 ; Sparse graph: |E|  |V| –Undirected graph: Edge (u,v) = edge (v,u) No self-loops –Directed graph: Edge (u,v) goes from vertex u to vertex v, notation u  v –A weighted graph associates weights with either the edges or the vertices

3 Representing Graphs Assume V = {1, 2, …, n} An adjacency matrix represents the graph as a n x n matrix A: –A[i, j] = 1 if edge (i, j)  E (or weight of edge) = 0 if edge (i, j)  E –Storage requirements: O(V 2 ) Best for a dense representation –But, can be very efficient for small graphs Especially if stores just one bit per edge Undirected graph: only need one diagonal of matrix

4 Adjacency Matrix Example: a d bc A

5 Adjacency List Adjacency list: for each vertex v  V, store a list of vertices adjacent to v Example: –Adj[1] = {2,3} –Adj[2] = {3} –Adj[3] = {} –Adj[4] = {3} Storage: O(V+E) –Good for large, sparse graphs (e.g., planar maps)

6 Graph Searching Given: a graph G = (V, E), directed or undirected Goal: methodically explore (visit) every vertex and every edge Ultimately: build a tree on the graph –Pick a vertex as the root –Choose certain edges to produce a tree –Note: might also build a forest if graph is not connected

7 Breadth-First Search “Explore” a graph, turning it into a tree –One vertex at a time –Expand frontier of explored vertices across the breadth of the frontier Builds a tree over the graph –Pick a source vertex to be the root –Find (“discover”) its children, then their children, etc. Emulates the level-order scan of a binary tree

8 Breadth-First Search Will associate vertex “colors” to guide the algorithm –White vertices have not been discovered All vertices start out white –Grey vertices are discovered but not fully explored They may be adjacent to white vertices –Black vertices are discovered and fully explored They are adjacent only to black and gray vertices Explore vertices by scanning adjacency list of grey vertices White Grey Black

9 Breadth-First Search BFS(G, s) { initialize vertices; Q = {s};// Q is a queue; initialize to s while (Q not empty) { u = RemoveTop(Q); for each v  u->adj { if (v->color == WHITE) v->color = GREY; v->d = u->d + 1; v->p = u; Enqueue(Q, v); } u->color = BLACK; } What does v->p represent? What does v->d represent? G - graph s - source vertex p is the predecessor d is the distance

10 Breadth-First Search: Example         rstu vwxy

11 Breadth-First Search: Example   0      rstu vwxy s Q:

12 Breadth-First Search: Example 1  0 1     rstu vwxy w Q: r

13 Breadth-First Search: Example 1    rstu vwxy r Q: tx

14 Breadth-First Search: Example   rstu vwxy Q: txv

15 Breadth-First Search: Example  rstu vwxy Q: xvu

16 Breadth-First Search: Example rstu vwxy Q: vuy

17 Breadth-First Search: Example rstu vwxy Q: uy

18 Breadth-First Search: Example rstu vwxy Q: y

19 Breadth-First Search: Example rstu vwxy Q: Ø

20 BFS: The Code Again BFS(G, s) { initialize vertices; Q = {s}; while (Q not empty) { u = RemoveTop(Q); for each v  u->adj { if (v->color == WHITE) v->color = GREY; v->d = u->d + 1; v->p = u; Enqueue(Q, v); } u->color = BLACK; } What will be the running time? Touch every vertex: O(V) u = every vertex, but only once (Why?) So v = every vertex that appears in some other vert’s adjacency list Total running time: O(V+E)

21 BFS: The Code Again BFS(G, s) { initialize vertices; Q = {s}; while (Q not empty) { u = RemoveTop(Q); for each v  u->adj { if (v->color == WHITE) v->color = GREY; v->d = u->d + 1; v->p = u; Enqueue(Q, v); } u->color = BLACK; } What will be the storage cost in addition to storing the tree? Total space used: O(E)

22 Breadth-First Search: Properties BFS calculates the shortest-path distance to the source node –Shortest-path distance  (s,v) = minimum number of edges from s to v, or  if v not reachable from s BFS builds breadth-first tree, in which paths to root represent shortest paths in G –Thus can use BFS to calculate shortest path from one vertex to another in O(V+E) time

23 Depth-First Search Depth-first search is another strategy for exploring a graph –Explore “deeper” in the graph whenever possible –Edges are explored out of the most recently discovered vertex v that still has unexplored edges –When all of v’s edges have been explored, backtrack to the vertex from which v was discovered –Emulates the postorder scan of a binary tree

24 Depth-First Search Vertices initially colored white Then colored gray when discovered Then black when finished

25 Depth-First Search: The Code DFS(G) { for each vertex u  G->V { u->color = WHITE; } time = 0; for each vertex u  G->V { if (u->color == WHITE) DFS_Visit(u); } DFS_Visit(u) { u->color = GREY; time = time+1; u->d = time; for each v  u->Adj[] { if (v->color == WHITE) DFS_Visit(v); } u->color = BLACK; time = time+1; u->f = time; }

26 Depth-First Search: The Code DFS(G) { for each vertex u  G->V { u->color = WHITE; } time = 0; for each vertex u  G->V { if (u->color == WHITE) DFS_Visit(u); } DFS_Visit(u) { u->color = GREY; time = time+1; u->d = time; for each v  u->Adj[] { if (v->color == WHITE) DFS_Visit(v); } u->color = BLACK; time = time+1; u->f = time; } What does u->d represent? Discovery time

27 Depth-First Search: The Code DFS(G) { for each vertex u  G->V { u->color = WHITE; } time = 0; for each vertex u  G->V { if (u->color == WHITE) DFS_Visit(u); } DFS_Visit(u) { u->color = GREY; time = time+1; u->d = time; for each v  u->Adj[] { if (v->color == WHITE) DFS_Visit(v); } u->color = BLACK; time = time+1; u->f = time; } What does u->f represent? Finishing time

28 Depth-First Search: The Code DFS(G) { for each vertex u  G->V { u->color = WHITE; } time = 0; for each vertex u  G->V { if (u->color == WHITE) DFS_Visit(u); } DFS_Visit(u) { u->color = GREY; time = time+1; u->d = time; for each v  u->Adj[] { if (v->color == WHITE) DFS_Visit(v); } u->color = BLACK; time = time+1; u->f = time; } Will all vertices eventually be colored black?

29 Depth-First Search: The Code DFS(G) { for each vertex u  G->V { u->color = WHITE; } time = 0; for each vertex u  G->V { if (u->color == WHITE) DFS_Visit(u); } DFS_Visit(u) { u->color = GREY; time = time+1; u->d = time; for each v  u->Adj[] { if (v->color == WHITE) DFS_Visit(v); } u->color = BLACK; time = time+1; u->f = time; } What will be the running time?

30 Depth-First Search: The Code DFS(G) { for each vertex u  G->V { u->color = WHITE; } time = 0; for each vertex u  G->V { if (u->color == WHITE) DFS_Visit(u); } DFS_Visit(u) { u->color = GREY; time = time+1; u->d = time; for each v  u->Adj[] { if (v->color == WHITE) DFS_Visit(v); } u->color = BLACK; time = time+1; u->f = time; } Running time: O(n 2 ) because call DFS_Visit on each vertex, and the loop over Adj[] can run as many as |V| times

31 Depth-First Search: The Code DFS(G) { for each vertex u  G->V { u->color = WHITE; } time = 0; for each vertex u  G->V { if (u->color == WHITE) DFS_Visit(u); } DFS_Visit(u) { u->color = GREY; time = time+1; u->d = time; for each v  u->Adj[] { if (v->color == WHITE) DFS_Visit(v); } u->color = BLACK; time = time+1; u->f = time; } BUT, there is actually a tighter bound. How many times will DFS_Visit() actually be called?

32 Depth-First Search: The Code DFS(G) { for each vertex u  G->V { u->color = WHITE; } time = 0; for each vertex u  G->V { if (u->color == WHITE) DFS_Visit(u); } DFS_Visit(u) { u->color = GREY; time = time+1; u->d = time; for each v  u->Adj[] { if (v->color == WHITE) DFS_Visit(v); } u->color = BLACK; time = time+1; u->f = time; } So, running time of DFS = O(V+E)

33 Depth-First Sort Analysis This running time argument is an informal example of amortized analysis –“Charge” the exploration of edge to the edge: Each loop in DFS_Visit can be attributed to an edge in the graph Runs once per edge if directed graph, twice if undirected Thus loop will run in O(E) time, algorithm O(V+E) –Considered linear for graph, because adj list requires O(V+E) storage

34 DFS Example source vertex

35 DFS Example 1 | | | | | | | | source vertex d f

36 DFS Example 1 | | | | | | 2 | | source vertex d f

37 DFS Example 1 | | | | |3 | 2 | | source vertex d f

38 DFS Example 1 | | | | |3 | 4 2 | | source vertex d f

39 DFS Example 1 | | | |5 |3 | 4 2 | | source vertex d f

40 DFS Example 1 | | | |5 | 63 | 4 2 | | source vertex d f

41 DFS Example 1 |8 | | |5 | 63 | 4 2 | 7 | source vertex d f

42 DFS Example 1 |8 | | |5 | 63 | 4 2 | 7 | source vertex d f

43 DFS Example 1 |8 | | |5 | 63 | 4 2 | 79 | source vertex d f What is the structure of the grey vertices? What do they represent?

44 DFS Example 1 |8 | | |5 | 63 | 4 2 | 79 |10 source vertex d f

45 DFS Example 1 |8 |11 | |5 | 63 | 4 2 | 79 |10 source vertex d f

46 DFS Example 1 |128 |11 | |5 | 63 | 4 2 | 79 |10 source vertex d f

47 DFS Example 1 |128 |1113| |5 | 63 | 4 2 | 79 |10 source vertex d f

48 DFS Example 1 |128 |1113| 14|5 | 63 | 4 2 | 79 |10 source vertex d f

49 DFS Example 1 |128 |1113| 14|155 | 63 | 4 2 | 79 |10 source vertex d f

50 DFS Example 1 |128 |1113|16 14|155 | 63 | 4 2 | 79 |10 source vertex d f

51 DFS: Kinds of edges DFS introduces an important distinction among edges in the original graph: –Tree edge: encounter new (white) vertex The tree edges form a spanning forest Can tree edges form cycles? Why or why not?

52 DFS Example 1 |128 |1113|16 14|155 | 63 | 4 2 | 79 |10 tree edges form a spanning forest

53 DFS Example 1 |128 |1113|16 14|155 | 63 | 4 2 | 79 |10 tree edges form a spanning forest

54 DFS: Kinds of edges DFS introduces an important distinction among edges in the original graph: –Tree edge: encounter new (white) vertex –Back edge: from descendent to ancestor Encounter a grey vertex (grey to grey)

55 DFS Example 1 |128 |1113|16 14|155 | 63 | 4 2 | 79 |10 Tree edgesBack edges

56 DFS: Kinds of edges DFS introduces an important distinction among edges in the original graph: –Tree edge: encounter new (white) vertex –Back edge: from descendent to ancestor –Forward edge: from ancestor to descendent Not a tree edge, though From grey node to black node

57 DFS Example 1 |128 |1113|16 14|155 | 63 | 4 2 | 79 |10 Tree edgesBack edgesForward edges

58 DFS: Kinds of edges DFS introduces an important distinction among edges in the original graph: –Tree edge: encounter new (white) vertex –Back edge: from descendent to ancestor –Forward edge: from ancestor to descendent –Cross edge: between a tree or subtrees From a grey node to a black node

59 DFS Example 1 |128 |1113|16 14|155 | 63 | 4 2 | 79 |10 source vertex d f Tree edgesBack edgesForward edgesCross edges

60 DFS: Kinds of edges DFS introduces an important distinction among edges in the original graph: –Tree edge: encounter new (white) vertex –Back edge: from descendent to ancestor –Forward edge: from ancestor to descendent –Cross edge: between a tree or subtrees Note: tree & back edges are important; most algorithms don’t distinguish forward & cross