Chapter 47 Animal Development

Slides:



Advertisements
Similar presentations
Today’s Objective: 2.1 The student will list the germ layers and their derivatives The student will be able to sequence the stages of animal development.
Advertisements

Animal Development.
Animal Development Chapter 47.
GROWTH AND DEVELOPMENT IN ANIMALS
Chapter 47 Animal Development.
Tutorial for module BY1101: Joe Colgan
Animal Development.
Ch. 47.
 Gestation: carrying one or more embryos in uterus.  Humans: 266 days  Rodents: 21 d  Dogs: 60 d  Cows: 270  Elephant: 600 days.
By the fly hunnys.  Morphogenesis in animals involves specific changes in cell shape, position and adhesion  The developmental fate of cells depends.
Chapter 47: Animal Development
Human Embryology.
Animal Embryonic Development
Ch. 46/47 Warm-Up (Ch. 46) How do oogenesis and spermatogenesis differ? (Ch. 46) How do these hormones affect the menstrual cycle? LH FSH Estrogen Progesterone.
Development Ch 47.
Chapter 47 Animal Development
Development Ch 47.
23.1 Animal Characteristics Animals Animal Characteristics Multicellular Heterotrophic Lack cell walls Sexual Reproduction Movement Specialization.
Nancy G. Morris Volunteer State Community College
Animal Development Emily Huang, Erin McGrath, Michelle Xu.
Chapter 47 Animal Development. Embryonic development/fertilization u Preformation~ until 18th century; miniature infant in sperm or egg u At fertilization/conception:
Embryology Cellular and Molecular Mechanisms Involved in Fertilization and Development.
Animal Development Process of development from a single cell to an entire multi-cellular organism.
Animal Development. Outline I.Early Stages of Embryonic Development A. Intro B. Fertilization C. Cleavage D. Gastrulation II.Morphogenesis.
Chapter 47 Animal Development Ms. Klinkhachorn Saturday April 30, 2011 AP Biology.
Chapter 00 Animal Development Biology 102 Tri-County Technical College Pendleton, SC.
Chapter 47 Reading Quiz 1.Which reaction acts as a “fast block” to polyspermy? 2.Which reaction acts as a “slow block” to polyspermy? 3.Name the series.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Chapter 47: Animal Development.
Fertilization Fertilization activates the egg
CHAPTER 27 Reproduction and Embryonic Development
Animal Development By Natasha Guenther, Brea Altoya, and Bianca (I can’t spell her last name so I’m leaving it out)
Chapter 47: Animal Development
Animal Development Chapter 47. WHAT’S NEXT? Once copulation ends…
D EVELOPMENTAL B IOLOGY Fertilization to Gastulation.
Embryonic Development
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings Concept 47.3: The developmental fate of cells depends on their history.
Chapter 53 Sila and Kharee
Embryonic Development Involves 3 Components: 1. Cell Division- The mitotic increase in the number of cells. 2. Differentiation- The development of specialized.
Ch 47 Fertilization through organogenesis
 An organism’s development is planned by a genetic program involving the genome of the zygote and the molecules placed in the egg by the mother › These.
CELLULAR DEVELOPMENT OF THE ZYGOTE. HOW DO ZYGOTES FORM ORGANISMS When a zygote is undergoing early cleavage division, there must be a way for embryonic.
Development. Fertilization Chemotaxis Sea Urchin’s eggs have a chemotatic molecule called resact. This molecule is found in the outer jelly coat of.
Lecture Date ________ Chapter 47 –Animal Development.
PRINCIPLES OF EMBRYONIC DEVELOPMENT © 2012 Pearson Education, Inc.
By: Melissa Shannon Summer Assignment. Occur during fertilization and each of the three successive stages that build the animal’s body. The Acrosomal.
Animal Development [Note: This is the text version of this lecture file. To make the lecture notes downloadable over a slow connection (e.g. modem) the.
AP BIOLOGY SHANNON BRADY 2010 Chapter 47: Animal Development.
Embryological Development Development is fundamentally similar in all eukaryotes Development is fundamentally similar in all eukaryotes There are 3 aspects.
1 UNIT 3 PART 4: EMBRYOLOGICAL DEVELOPMENT In the early stages of development the organism is called an embryo. The basic processes of development are.
Animal Development. The Mystery of Development The main problem of embryology is this: How, in the course of development, does a cell of one type.
Preformation: the egg or sperm contains an embryo that is a preformed miniature adult. Epigenesis: the form of an animal emerges from a relatively formless.
Cleavage of Frog and Chick Eggs Chapter VI. 4 Total Development = cleavage, morphogenesis, differentiation, growth 4 Cleavage-immediately after fertilization.
Lecture #20 Date ________ u Chapter 47 ~ Animal Development.
The Developmental Fate of Cells Marissa and Katie.
Chapter 47 Animal Development.
Embryonic Development of Animals
Chapter 54. Development
Ch. 46/47 Warm-Up (Ch. 46) How do oogenesis and spermatogenesis differ? (Ch. 46) How do these hormones affect the menstrual cycle? LH FSH Estrogen Progesterone.
Compiled by… Micki Lewis And Stephanie Langga
Chapter 47 Animal Development.
Ch. 46/47 Warm-Up (Ch. 46) How do oogenesis and spermatogenesis differ? (Ch. 46) How do these hormones affect the menstrual cycle? LH FSH Estrogen Progesterone.
Lecture #20 Date ________
Animal Development Chapter 47 ~ Animal Development.
Animal Growth and Development
Animal development Alyssa & Karenn.
Development
Animal Development Introduction to animal development
Animal Development Mr. Price AP Biology.
Chapter 47- Animal Development
CHAPTER 47 Animal Development
Presentation transcript:

Chapter 47 Animal Development Nicole Gallup

Embryonic Development Genomes of zygote and differences btwn early embryonic cells determine development Cytoplasmic Determinants – Uneven distribution of maternal substances in the unfertilized egg Differences between cells because of their location in the embryo Cell Differentiation – specialization of cells form and function, caused by gene expression Morphogenesis – process by which an embryo takes shape and cells are in the appropriate locations

Embryonic Stages Fertilization – When Gametes (sperm and egg) unite Cleavage – Rapid Cell divisions after Fertilization. S phase (DNA synthesis) and M phase (mitosis). Skips protein synthesis Gastrulation – Morphogenetic phase  Drastic rearrangement of the cells of the blastula. Forms a three-layered embryo with a primitive gut. Organogenesis – When regions of the three-layered embryo develop into fundamental organs

Fertilization Vocab Acrosomal Reaction - discharge of a sperm’s acrosome when it is near the egg Acrosome – Vesicle at the tip of sperm, helps sperm penetrate the egg Fast Block to Polyspermy – Depolarization of egg membrane after sperm binds to vitelline layer. Prevents more sperm from entering Fertilization Envelope - the changed vitelline layer – prevents other sperm from entering the egg Slow Block to Polyspermy – Formation of fertilization envelope and other changes, opposite of Fast block, lasts longer

Fertilization Fertilize externally – eggs and sperm are released at the same time. Sperm touches egg’s jelly coat – triggering release of acrosome – hole is formed in jelly Acrosomal process forms – protrudes from sperm, penetrates jelly coat, binds to receptors on egg cell – aka acrosomal reaction Hole made in vitelline layer – allows contact and fusion of gamete plasma membranes – membranes depolarize forming Fast block Sperm nucleus enters cytoplasm of egg – then slow block forms

Cleavage Vocab Blastomer – smaller cells that the embryo divides into Morula – cluster of cells after the first 5-7 divisions Blastocoel – a fluid filled cavity Blastula – hollow ball of cells Yolk – stored nutrients – distributed differently in all embryos Vegetal Pole – The pole that the yolk is most concentrated Animal Pole – Opposite pole, very little yolk

Cleavage After fusion of gametes cytoplasm rearranges forming 1 body axis. Other axes form later First 2 divisions are meridional (Vertical) = 4 blastomers of equal size Third division is equatorial (Horizontal) = 8 blastomers of unequal size – Animal hemisphere = small cells, Vegetal hemisphere = lager cells Blastula is located in the Animal Hemisphere

Gastrulation Vocab Gastrula – 3 layered Embryo Germ Layers – The 3 layers produced. Ectoderm – Outer layer Endoderm – Inner Layer Mesoderm – Partly fills space between Ecto and Endo Invagination – When cells fold inward Archenteron – Primitive Gut Blastopore – Opening in the archenteron, develops into the anus.

Gastrulation Complicated mechanics – Large amount of yolk & blastula is more than 1 cell thick Begins on back side of Blastula – cells begin to invaginate in the line along the region Dorsal Lip – The Dorsal side of the blastopore Lip extends and invagination continues until the two ends on the blastopore meet on the ventral side Involution – When future endoderm and mesoderm cells on the surface roll over edge of the lip into the interior of the embryo

Gastrulation Inside – cells move away from blastopore and become germ layers and blastocoel collapses Yolk Plug – Large food-laden endodermal cells surrounded by blastopore End of Gastrulation, circular lip of blastopore encircles plug, cells on surface becomes the ectoderm Anus forms from the blastopore and mouth develops at the opposite end.

Organogenesis Vocab Notochord – Formed from dorsal mesoderm Neural Tube – when neural plate curves inward – rolling into itself Neural Crest – band of cells along border of Neural tube Somites – Paired blocks of mesoderm lateral to notochord

Organogenesis First organs to take shape – neural tube and notochord Signals from notochord to ectoderm cause ectoderm to become neural plate Cells from neural crest migrate to all parts of the body – form peripheral nerves, teeth, skull bones Some somites become wandering cells – go to new locations. Organogenesis continues – cell differentiation continues to refine organs

Neural Plate formation Neural Tube Formation Somites

Morphogenesis Major aspect of development in animals – involves movement of cells. Changes in shape involve reorganization of the cytoskeleton. Cytoskeleton drives cell migration. Cells that move 1st drag others behind them – directs movement of a sheet if cells Convergent Extension – morphogenetic movement – cells of tissue layer rearrange, sheets become narrow (converge) and become longer (extend)

Extracellular Matrix Extracellular Matrix (ECM) – Mixture of secreted glycoproteins outside plasma membrane of cells – trigger/guide movement Some ECMs promote migration, providing specific molecular anchorage for moving cells Others keep cells on correct paths – inhibiting migration – use nonmigratory cells Cell Adhesion Molecules (CAMs) – glycoproteins – help cell migration and stable tissue structure Cadherins – important cell-to-cell adhesion molecule.

Developmental Fate of Cells Development requires a combo of morphogenetic changes and the timely differentiation of cells in specific location 2 general principles Early cleavage divisions – Embryonic cells must become different from each other Once initial cells asymmetries are set up, subsequent interactions among the embryonic cells influence their fate – usually causing changes in gene expression

A Cell’s Fate Fate Maps – diagram of embryonic development – reveals future development of individual cells/tissues A cell’s fate can be changed by moving the cell to a new location 2 Important conclusions Specific tissues of the older embryo can be attributed to certain early “founder cells” As development proceeds a cell’s developmental Potential becomes restricted

Establishing Cellular Asymmetries Establishing basic body plan is 1st step in morphogenesis – a prerequisite for the development of tissues/organs Totipotent – describes a cell that can become any part of an organism Zygote’s pattern of cleavage affects the fate of cells Progressive restriction of potency is a feature of development in all animals The tissue-specific fates of cells in late gastrula are fixed

Inductive Signals Cell division creates cells that differ from each other  the cells then influence each other’s fate (induction) Pattern Formation – development of an animal’s spatial organization, arrangement of organs/tissues – influenced by inductive signals Positional Information – Molecular cues – control pattern formation

Limbs Limbs begin as bumps of tissue called Limb buds Buds – consist of a core of mesoderm tissue covered by a layer of ectoderm – 2 organizer locations affect limb’s development Apical Ectodermal Ridge (AER) – 1 organizer – thickened area of ectoderm at the tip of the bud Zone of Polarizing Activity (ZPA) – other organizer – block of mesodermal tissue located underneath ectoderm – posterior side of the bud is attached to body

Citations http://www.vcharkarn.com/uploads/0/80.jpg http://3.bp.blogspot.com/_NDw_XebDkYI/S7ApTP1gibI/AAAAAAAAAO4/aYitNrMkyWo/s1600/cleavage.jpg http://bio1152.nicerweb.com/doc/class/bio1152/Locked/media/ch47/47_12FrogGastrulation.jpg http://bio1151.nicerweb.com/Locked/media/ch47/47_14FrogOrganogenesis_CL.jpg