Selection Lecture Wed. June 2 nd. Recap from last time: There are three essential mechanisms underlying evolution. There are three essential mechanisms.

Slides:



Advertisements
Similar presentations
Natural Selection on Polygenic Traits
Advertisements

EVOLUTION OF POPULATIONS
Option D: Evolution D4: The Hardy- Weinberg Principle.
Evolution and Populations
Evolution of Populations
Chapter 16: Evolution of Populations
Microevolution Chapter 18 contined. Microevolution  Generation to generation  Changes in allele frequencies within a population  Causes: Nonrandom.
Essentials of Biology Sylvia S. Mader
Chapter 18 Chapter 18 The Evolution of Populations.
Lecture Topic: Natural Selection as the mechanism of adaptive evolution: Importance: Natural Selection = differential survival and reproduction. Adaptation.
Lesson Overview 17.1 Genes and Variation.
Copyright Pearson Prentice Hall
Evolution of Populations
Genes Within Populations
Natural Selection Developed by Charles Darwin in 1859
How Populations Grow What is a population?  A population consists of all the individuals of a species that live together in one place at one time. What.
Main Points of Darwin’s Theory of Natural Selection
1 1 Population Genetics. 2 2 The Gene Pool Members of a species can interbreed & produce fertile offspring Species have a shared gene pool Gene pool –
Population Genetics youtube. com/watch
Chapter 20 Genes Within Populations
Chapter 23 The Evolution of Populations. Population Genetics u The study of genetic variation in populations. u Represents the reconciliation of Mendelism.
Chapter 23: The Evolution of Populations. Question?  Is the unit of evolution the individual or the population?  Answer – while evolution effects individuals,
16-2 Evolution as Genetic Change
POPULATION GENETICS 1. Outcomes 4. Discuss the application of population genetics to the study of evolution. 4.1 Describe the concepts of the deme and.
Human Inheritance- Important Facts 1) Sex chromosomes carry genes that determine whether a person is male or female. Girls have XX Boys have XY 2) Sex.
17.1 Genes and Variation.
Chapter 16 POPULATION GENETICS In order to understand the genetics behind populations we must revisit Darwin.
Genetics and Speciation
Population Genetics Population-all the members of a single species that occupy a particular region Population genetics-studies the genetic diversity of.
17.2 Evolution as Genetic Change in Populations
EVOLUTION Other Mechanisms of Evolutionary Change.
Slide 1 of 40 Copyright Pearson Prentice Hall 16-2 Evolution as Genetic Change.
Biology 15.2 How Populations Evolve How Populations Evolve.
Chapter 16: The Evolution of Populations and Speciation Objectives: Describe two causes of genotypic variation in a population Explain how to compute allele.
Evolution of A new Species Genetic Variation Sources of Genetic Variety The two main sources of genetic variation in a population are mutations and sexual.
Microevolution. Levels of Evolutionary Study Microevolution: examines changes to the genes (alleles) within populations –Population Genetics: studies.
AP Biology Lecture #42 Population Genetics The Evolution of Populations.
End Show Slide 1 of 40 Copyright Pearson Prentice Hall 16-2 Evolution as Genetic Change.
Population Genetics. The Gene Pool Members of a species can interbreed & produce fertile offspring Species have a shared gene pool Gene pool – all of.
CHAPTER 15 HOW A POPULATION GROWS. What is a population? ALL INDIVIDUALS OF A SPECIES THAT LIVE IN ONE PLACE AT ONE TIME.
Mader Evolution of Poplulations Chapter 23.
Lesson Overview 17.2 Evolution as Genetic Change in Populations Insect populations often contain a few individuals that are resistant to a particular pesticide.
Chapter 23 Evolutionary Change in Populations. Population Genetics Evolution occurs in populations, not individuals Darwin recognized that evolution occurs.
IP5: Hardy-Weinberg/Genetic Drift/Gene Flow EK1A1: Natural Selection is a major mechanisms of natural selection EK1A3: Evolutionary change is also driven.
SELECTION. Why doesn’t selection work anymore on running speed? A) There are probably diseases involved B) Too much inbreeding producing genetic defects.
Ch. 15 : Populations. What is a Population? Populations **Population: All individuals of a species living in a certain place Growth? Birth of offspring.
Bellwork  Define in your own words  Allele  Homozygous  Heterozygous  Recessive  Dominant.
Measuring Evolution of Populations
17.2 Evolution as Genetic Change in Populations
EVOLUITON Selection & Genetic drift
Evolution of Populations
Section 2: Genetic Change
Mechanisms of Evolution
Evolution of A new Species
Bellwork: What indicates that a population is evolving
17.2 Evolution as Genetic Change in Populations
17.2 Evolution as Genetic Change in Populations
Section 2: Genetic Change
Evolution of Populations: H-W
COMPLEX PATTERNS OF INHERITANCE
Bellringer Brainstorm about two examples of mutations.  One mutation would be useful and beneficial, while the other would be harmful.  Discuss how the.
Copyright Pearson Prentice Hall
Evolution—Population Genetics
Unit 4: Principles of Ecology
17.2 Evolution as Genetic Change in Populations
5 Agents of evolutionary change
Measuring Evolution of Populations
Patterns of Natural Selection & Genetic Drift
SURVIVAL OF THE FITTEST
Presentation transcript:

Selection Lecture Wed. June 2 nd.

Recap from last time: There are three essential mechanisms underlying evolution. There are three essential mechanisms underlying evolution. 1. Variation ( mutation, gene migration, genetic recombination) 1. Variation ( mutation, gene migration, genetic recombination) 2. Heritability or those traits that are inherited. 2. Heritability or those traits that are inherited. 3. Natural Selection or the differential capacity for survival. 3. Natural Selection or the differential capacity for survival.

Different things produce selection Internal environment Internal environment The external environment The external environment

SELECTION ??? How do measure such a concept Based on non-random breeding and on “fitness” Fitness = W = ability of some genotypes to leave more offspring to the next generation When W = 1 indicates best fit genotype (all offspring ) When W = 0 lethal genotype ( 0 offspring) When W = 0.5 genotype leaves ½ offspring for next generation

What is Fitness? Fitness = species' fitness lies at the heart of Darwin's original theory. The genetic contribution of an individual to succeeding generations. The ability to produce healthy offspring. SourceSource: Webster's Revised Unabridged Dictionary, © 1996, 1998 MICRA, Inc.

What is relative Fitness? The fitness of an individual relative to other individuals in a population.

Calculation of fitness W = Reproductive rate of unfavored alleles reproductive rate of favored alleles Consider the condition that for “normals” W = 1

Measure of the intensity of selection S = 1-W S = 0 is most fit S = 1 is least fit SELECTION COEFFICIENT(S)

Think of the lab example Fish A and Fish D Fish A had W= 1 so most fit Fish D had W= 0.6 For Fish D’s Fitness W= Reproductive rate of unfavored types (D) Reproductive rate of favored (A)

The opposite could hold true It will depend on the internal and external environments of the fish. Thus, Fish D may have W= 1 in a different pond so now W= Reproductive rate of unfavored types (A) Reproductive rate of favored (D) S will be 1- W or equal to 0

A. Selection against dominant allele Given the genotypes AA Aa aa Dominant genes can be good (favorable), bad (unfavorable) or neutral Most disadvantageous: dominant lethal time of lethal events effects W Environmental event may change fitness of dominant genes—could disappear in single generation Partial selection against dominants

Ex. Dwarfism- Achondroplasia Achondroplasia is a genetic disorder of bone growth that is evident at birth. A major type of dwarfism. It affects nearly one in every 25,000 births Non specific to races, creeds or sexes. Achondroplastic dwarfism is characterized by an average-size trunk, short arms and legs, and a slightly enlarged head and prominent forehead.

A case of Dwarfism Achondroplastic dwarfs produce 19.6% offspring as normal population (no differences in survival) Dwarfism is a dominant allele W = 19.6/100 = fitness value Since S = 1-W S = selection coefficient against dwarfs i.e. 80.4% of the expected offspring are removed solely by selection

In this dominant case Achondroplasia is not favored for even though has a dominant A allele Non dominant alleles are now favored for normal births to occur

How does this work in terms of evolution?

% A In population W = 0 Time W = 0.2 W = 0.1 Note that A is gradually lost over time This level of selection leads to elimination of dominant and fixation of the recessive. Ignores mutation rate.

B. Selection against recessive allele Genotypes AA Aa aa Aa not affected in complete dominance Therefore, elimination of recessive is very slow. If there is co-dominance or incomplete dominance, elimination of recessive can be faster I.e. Aa is disadvantageous

Ex. Is Cystic Fibrosis CF is a genetic disorder that affects the respiratory, digestive and reproductive systems. There are approximately 30,000 people in the United States with CF There is an inflammation of the mucous membranes causing excess mucous to form and clump in the lungs.

The presence of two mutant genes (g) is needed for CF to appear. Each parent carries one defective gene (g) and one normal gene (G). The single normal gene is sufficient for normal function of the mucus glands, and the parents are therefore CF-free. Each child has a 25 percent risk of inheriting two defective genes and getting CF, a 25 percent chance of inheriting two normal genes, and a 50 percent chance of being an unaffected carrier like the parents.

C. Selection favoring heterozygotes Genotypes AA Aa aa Co-dominance or incomplete dominance must be involved if Aa is favored Reminder: co-dominance= Situation in which two different alleles for a genetic trait are both expressed autosomal dominant, recessive gene incomplete dominance= A condition where a heterozygous off- spring has a phenotype that is distinctly different from, and intermediate to, the parental phenotypes

Specific Terms Sickel Cell anemia- abnormal blood cells with irregular sickle cell shape. When these hard and pointed red cells go through the small blood tube, they clog the flow and break apart. This can cause pain, damage and a low blood count, or anemia.

What makes the red cell sickle? Hemoglobin. This protein carries oxygen inside the cell. Any changes in this protein causes the hemoglobin to form long rods in the red cell when it gives away oxygen. The hemoglobin allele S, is what is responsible for the disease. Why has this disease not been depleted if it is caustic? The heterozygotes for the S allele are resistant to malaria.

The Statistics phenotype s normalMild anemiaSevere anemia genotypesHb N, Hb N Hb N, Hb S Hb S, Hb S Fitness (W) In USA In Africa

What sort of Selection will favor heterozygotes like the sickle cell anemia case?

The choices Disruptive Stabilizing Directional

The Answer: Stabilizing Selection Selection eliminates the extremes. It prevents the changes of the middle range Doesn’t change the more common phenotypic traits shown in the population

D.Selection for polygenic traits 1. Stabilizing selection = elimination of extremes from the population Before selection After selection % pop

In nature, natural selection is most commonly stabilizing. The average members of the population, with intermediate body sizes, have higher fitness than the extremes. Natural selection now acts against change in form, and keeps the population constant through time.

The phenotypic distribution before selection is a relatively broad bell- curve. The Variance is also reduced Text material © 2002 by Steven M. Carr

Stabilizing Selection ex. Human infants with an average/intermediate birth weight will have the higher survival rate.

Disruptive Selection The middle of the range of phenotypes are selected against A bimodal distribution results

2. Disruptive selection = elimination of intermediate individuals from population i.e. increases population variability Character displacement

The implication of the distribution As a result, the population will be monomorphic for one of the homozygous genotypes spanning one of the two peaks in the population distribution. Which homozygous genotype comes to predominate, however, depends on the initial allele frequencies in the population.

Most common Disruptive Selection Example Diverse beak sizes in finch populations. Has high amounts of large and small beaks but few middle sized beaks. This suggests considerable variation in body and beak size (large beaks are better for large seeds but can also eat small seeds favored by finches with small beaks).

Directional Selection Tries to eliminate one of the two extremes Distributions are either right or left skewed

3. Directional selection X X X Height =elimination of individuals from the population causing progressive shift in an average trait through time

The implications Often, shifts in environmental conditions, such as climate change or the presence of a new disease or predator, can push a population toward one extreme for a trait. In periods of prolonged cold temperatures, natural selection may favor larger animals because they are better able to withstand extreme temperatures.

Directional Examples Components of fitness, such as survival after food depletion in Cliff Swallows Insecticide resistance in insects heavy metal tolerance in plants

Summary selection coefficient (S) Relative Fitness coefficient (W) There are three kinds of natural selection 1. Stabilizing- peak will get narrower 2. Disruptive- 2 peaks form 3. Directional- peak shifts to one side specifically

One would think most populations are in a normal distribution. However, we can now suggest that “The selection on the traits affected by many genes ( or environmental pressures) can favor both extremes, the intermediate values, or only one extreme.” Stabilizing Selection and Directional Selection are fairly common in various populations. Disruptive Selection-this is uncommon, but of theoretical interest because it suggests a mechanism for species formation without geographic isolation

Final Thought Selection is the agent of evolution that solely produces adaptive evolutionary changes.