Arnaud Cassan Optical and Infrared Wide-Field Astronomy in Antarctica ARI / ZAH Heidelberg IAP, 14 – 16 June 2006 Microlensing search for extra-solar planets.

Slides:



Advertisements
Similar presentations
Twenty Years of Microlensing Observations From the Andrzej Udalski Warsaw University Observatory Perspective.
Advertisements

EUCLID : From Dark Energy to Earth mass planets and beyond Jean-Philippe Beaulieu Institut dAstrophysique de Paris Dave Bennett University of Notre Dame.
Microlensing Surveys for Finding Planets Kem Cook LLNL/NOAO With thanks to Dave Bennett for most of these slides.
The MOA Project 2013 Observing Season
P.Tisserand Rencontres du Vietnam Final results on galactic dark matter from the EROS-2 microlensing survey ~ images processed - 55 million.
The Smallest Planet Orbiting the Smallest Star David Bennett University of Notre Dame for the MOA & OGLE Collaborations mobile phone:
18 th Conference on Gravitational Microlensing Microlensing Planetary and Binary Statistics from Generation-II OGLE-MOA-Wise Microlensing Planetary.
Deriving the true mass of an unresolved BD companion by AO aided astrometry Eva Meyer MPIA, Heidelberg Supervisor: Martin Kürster New Technologies for.
Astrophysical applications of gravitational microlensing By Shude Mao Ziang Yan Department of Physics,Tsinghua.
PLANET/Robonet : searching for low mass extra solar planets via microlensing. Jean-Philippe Beaulieu, Institut d’Astrophysique de Paris.
Other Science from Microlensing Surveys I or Microlenses as Stellar Probes By Jonathan Devor.
The Gravitational Microlensing Planet Search Technique from Space David Bennett & Sun Hong Rhie (University of Notre Dame) Gravitational Lensing Time Series.
Ge/Ay133 What (exo)-planetary science can be done with microlensing?
Planetary Microlensing for dummies Nick Cowan April 2006.
The Galactic Exoplanet Survey Telescope (GEST) D. Bennett (Notre Dame), J. Bally (Colorado), I. Bond (Auckland), E. Cheng (GSFC), K. Cook (LLNL), D. Deming,
Vulcan South - Extrasolar Planet Transit Search Doug Caldwell SETI Institute A search for transits of extrasolar planets Uses a wide-field (7 x 7 deg)
PLAnetary Transits and Oscillations of stars Thierry Appourchaux for the PLATO Consortium
PX437 EXOPLANETS Horne PX437 EXOPLANETS Gravitational microlensing Paczynski 1996, ARA&A 34, 419 Observer Lensing mass Background source.
Detection of Terrestrial Extra-Solar Planets via Gravitational Microlensing David Bennett University of Notre Dame.
Exploring Black Hole Demographics with Microlensing
Exoplanet Detection Techniques II GUASA 12/10/2013 Prof. Sara Seager MIT.
OB390 and the new microlensing planets Christian Coutures Eso Santiago September 2006.
Searching for low mass extra solar planets via microlensing. Jean-Philippe Beaulieu, Virginie Batista, Arnaud Cassan, Christian Coutures, Jadzia Donatowicz,
NEO Research Project in Korea Wonyong Han 1, Yong-Ik Byun 2, Hong-Suh Yim 1, Young-Jun Choi 1, Hong-Kyu Moon 1 & NESS Team 1 Korea Astronomy and Space.
DRM1 & Exoplanet Microlensing David Bennett University of Notre Dame.
Scottish Universities Physics Alliance SUPA Astronomy & Space Physics Graham Woan University of Glasgow.
Searches for exoplanets
MOA-II Microlensing Survey Takahiro Sumi (Nagoya University) the MOA collaboration Abe,F; Bennett,P.D;Bond, I. A.;Fukui,A;Furusawa,K; Hearnshaw, J. B.;Itow,Y;
OGLE-2003-BLG-235/MOA-2003-BLG-53: A Definitive Planetary Microlensing Event David Bennett University of Notre Dame.
1 The Precision Radial Velocity Spectrometer Science Case.
The Microlensing Event Rate and Optical Depth Toward the Galactic Bulge from MOA-II Takahiro Sumi (Osaka University)
Studying cool planets around distant low-mass stars Planet detection by gravitational microlensing Martin Dominik Royal Society University Research Fellow.
Measuring Parameters for Microlensing Planetary Systems. Scott Gaudi Matthew Penny (OSU)
A Short Talk on… Gravitational Lensing Presented by: Anthony L, James J, and Vince V.
Microlensing Planets from the Ground and Space David Bennett University of Notre Dame.
Microlensing, « blue dot team » Jean-Philippe Beaulieu Collaborators/interested by a microlensing program on EUCLID IAP : Batista, Marquette Observatoire.
Upgrade plan of the MOA 1.8-m telescope F. Abe MOA collaboration 19 Jan. 2009, 13th Microlensing Paris.
Searching for Frozen super Earth mass planet via microlensing. Jean-Philippe Beaulieu, Institut d’Astrophysique de Paris PLANET/ROBONET collaboration HOLMES.
The mass of the free-floating planet MOA-2011-BLG-274L Philip Yock 18 th International Conference on Gravitational Lensing LCOGT, Santa Barbara January.
Towards Earth mass planets via microlensing. Jean-Philippe Beaulieu, et al. HOLMES & PLANET Collaboration Institut d’Astrophysique de Paris Europlanet.
16th Microlensing Season of the Optical Gravitational Lensing Experiment A. Udalski Warsaw University Observatory.
EXTRASOLAR PLANETS FROM DOME -C Jean-Philippe Beaulieu Institut d’Astrophysique de Paris Marc Swain JPL, Pasadena Detecting extrasolar planets Transit.
Exoplanets with WFIRST: Science Questions, Goals, and a FOM Scott Gaudi With input from David Bennett and the ExoSubCommitee Jay Anderson, JP Beaulieu,
Extrasolar Planets Instructor: Calvin K. Prothro; P.G., CPG (John Rusho) Section 003: F343, T Th 11:00 p.m. to 12:15 p.m. Section 004: F381, T Th 12:30.
Korean Astronomical Society Meeting, April 22, 2005 Scott Gaudi Harvard-Smithsonian Center for Astrophysics & Topics in the Search for Extrasolar Planets.
Corot Week 9 ESTEC 5-9 Dec 2005 Frédéric Pont Geneva Observatory Lessons from the OGLE planetary transit survey Francois Bouchy (Marseille/OHP), Nuno Santos.
Other Planets (Exoplanets). OGLE-2005-BLG-390Lb Discovered in 2005, via `gravitational microlensing’, which uses the properties of lensing of light to.
Extrasolar Planet Search OGLE-2005-BLG-390Lb The Age of Miniaturization: Smaller is Better OGLE-2005-BLG-390Lb is believed to be the smallest exoplanet.
Extrasolar planets Emre Işık (MPS, Lindau) S 3 lecture Origin of solar systems 14 February 2006.
A STEP Expected Yield of Planets … Survey strategy The CoRoTlux Code Understanding transit survey results Fressin, Guillot, Morello, Pont.
Detection of Extrasolar Planets through Gravitational Microlensing and Timing Method Technique & Results Timing Method.
Microlensing planet surveys: the second generation Dan Maoz Tel-Aviv University with Yossi Shvartzvald, OGLE, MOA, microFUN.
Gravitational Lensing: How to See the Dark J. E. Bjorkman University of Toledo Department of Physics & Astronomy.
Chinese- international collaboration solved the central question: ”How common are planets like the Earth”
The WFIRST Microlensing Exoplanet Survey: Figure of Merit David Bennett University of Notre Dame WFIRST.
Studying cool planets around distant low-mass stars Planet detection by gravitational microlensing Martin Dominik Royal Society University Research Fellow.
20 th Microlensing Workshop Spitzer Microlens Detection of a Massive Remnant in a Well-separated Binary Yossi Shvartzvald Jet Propulsion Laboratory, California.
Cool planet mass function and a fly’s-eye ‘evryscope’ at Antarctica Philip Yock, Auckland, New Zealand 20th Microlensing Workshop Institut d'Astrophysique.
2003 UB313: The 10th Planet?. Extra-Solar or Exoplanets Planets around stars other than the Sun Difficult to observe Hundreds discovered (> 2000 so far)
MOA-II microlensing exoplanet survey
March 7, 2016March 7, 2016March 7, 2016Yerevan, Armenia1 GRAVITATIONAL LENSING GRAVITATIONAL LENSING History, Discovery and Future Measuring Mass of Dark.
Astrophysical applications of gravitational microlensing(II) By Shude Mao Ziang Yan Department of Physics,Tsinghua.
Constraining the masses of OGLE microlenses with astrometric microlensing Noé Kains (STScI) with Kailash Sahu, Jay Anderson, Andrzej Udalski, Annalisa.
Observing the parallax effect due to gravitational lensing with OSIRIS
First results from BEST at OHP
Microlensing with CCDs
What (exo)-planetary science can be done with microlensing?
EXPLORING FREE FLOATING PLANETS WITH MICROLENSING
Search and Characterization
Presentation transcript:

Arnaud Cassan Optical and Infrared Wide-Field Astronomy in Antarctica ARI / ZAH Heidelberg IAP, 14 – 16 June 2006 Microlensing search for extra-solar planets from Dome C Arnaud Cassan Astronomisches Rechen-Institut (ARI), Zentrum für Astronomie der Universität Heidelberg (ZAH) J.-P. Beaulieu, P. Fouqué, J.-B. Marquette, C. Coutures

Arnaud Cassan Optical and Infrared Wide-Field Astronomy in Antarctica ARI / ZAH Heidelberg IAP, 14 – 16 June 2006 Outline 1/ The microlensing method 2/ The current observing setup 3/ Results and capabilities of the method 4/ Why observing from Dome C ? 5/ Summary & conclusion

Arnaud Cassan Optical and Infrared Wide-Field Astronomy in Antarctica ARI / ZAH Heidelberg IAP, 14 – 16 June 2006 The Gravitational microlensing effect ► Magnification of the source star flux Probing the Galactic Halo (MACHO, EROS) Galactic structure (OGLE, MACHO, EROS) Search for extra-solar planets (PLANET, MOA, MicroFun)

Arnaud Cassan Optical and Infrared Wide-Field Astronomy in Antarctica ARI / ZAH Heidelberg IAP, 14 – 16 June 2006 Observations toward the Bulge Probability of a microlensing event :  observations toward the Bulge OGLE fields Dome C is definitely the best site to observe the Bulge from Earth

Arnaud Cassan Optical and Infrared Wide-Field Astronomy in Antarctica ARI / ZAH Heidelberg IAP, 14 – 16 June 2006 Image separation : Einstein radius crossing time : Maximum amplification :  unresolved images !  Flux magnification monitoring weeks continuous observations from Dome C

Arnaud Cassan Optical and Infrared Wide-Field Astronomy in Antarctica ARI / ZAH Heidelberg IAP, 14 – 16 June 2006 The « standard » multi-site setup: a network of telescopes Ongoing microlensing events alerted by OGLE, MOA (EROS, MACHO) Days Follow-up network : PLANET collaboration

Arnaud Cassan Optical and Infrared Wide-Field Astronomy in Antarctica ARI / ZAH Heidelberg IAP, 14 – 16 June 2006 ”Homebase” : - light curves modeling - observational strategy - public alerts - anomaly predictions Observatories Raw data ( on-line reduction ) Data reduction pipeline Observational strategy BUT requires many “manual” operations…  One site allow much more automated procedures, from data reduction to data analysis and modeling

Arnaud Cassan Optical and Infrared Wide-Field Astronomy in Antarctica ARI / ZAH Heidelberg IAP, 14 – 16 June 2006 MOA 2003-BLG-53Lb : a Jupiter-like planet

Arnaud Cassan Optical and Infrared Wide-Field Astronomy in Antarctica ARI / ZAH Heidelberg IAP, 14 – 16 June 2006 OGLE-2005-BLG-071Lb : another Jupiter-like planet

Arnaud Cassan Optical and Infrared Wide-Field Astronomy in Antarctica ARI / ZAH Heidelberg IAP, 14 – 16 June 2006 OGLE-2005-BLG-390Lb a 5.5 Earth-mass planet

Arnaud Cassan Optical and Infrared Wide-Field Astronomy in Antarctica ARI / ZAH Heidelberg IAP, 14 – 16 June 2006 OGLE-2005-BLG-169Lb : a weak Neptune plant signal Gaps in the coverage  difficulties in modeling and finding a unique model

Arnaud Cassan Optical and Infrared Wide-Field Astronomy in Antarctica ARI / ZAH Heidelberg IAP, 14 – 16 June 2006 Detection efficiencies Cassan et al., 2006, en préparation  [1] Modeling of individual events, e.g. :  [2] Statistical combination of the individual efficiencies

Arnaud Cassan Optical and Infrared Wide-Field Astronomy in Antarctica ARI / ZAH Heidelberg IAP, 14 – 16 June 2006 Microlensing detection efficiencies Cassan et al., 2006, en préparation These planets of few Earth masses and few AU orbits may be very common A continuous monitoring from Dome C would push the detection efficiency limits toward low-mass stars

Arnaud Cassan Optical and Infrared Wide-Field Astronomy in Antarctica ARI / ZAH Heidelberg IAP, 14 – 16 June 2006 Limits on abundance of exoplanets No strong selection with star brightness (only the lens mass is involved) The « whole » range of star mass is probed (prop. to their abundance) Gaudi et al Ultimately, microlensing can provide a good estimation of Galactic planet abundance

Arnaud Cassan Optical and Infrared Wide-Field Astronomy in Antarctica ARI / ZAH Heidelberg IAP, 14 – 16 June 2006 Multiple planetary systems Kubas, Cassan et al. (in preparation) Ex. Constraints on additional Jupiter-like planets on OGLE-2005-BLG-390

Arnaud Cassan Optical and Infrared Wide-Field Astronomy in Antarctica ARI / ZAH Heidelberg IAP, 14 – 16 June 2006 Complementary to other methods

Arnaud Cassan Optical and Infrared Wide-Field Astronomy in Antarctica ARI / ZAH Heidelberg IAP, 14 – 16 June 2006 Main goals of microlensing Detection of Neptune to Earth-mass planets Abundance of extra-solar planets in the Galaxy From space simulations (MPF satellite, Bennett et al. 2005) : –66 terrestrial planets –100 icy giants –3300 gas giants  Order of magnitude of what may be expected from Dome C

Arnaud Cassan Optical and Infrared Wide-Field Astronomy in Antarctica ARI / ZAH Heidelberg IAP, 14 – 16 June 2006 Why Dome C ? With he current setup : –Gaps in the light curve –Multi-site photometry = difficulties with combining data sets from different telescopes (mean seeing/air mass, weather conditions, CCDs…) –Australia do not provide stable weather conditions to operate a deep round-the-clock monitoring  Only 1 terrestrial planet so far Given that : - the theoretical efficiency is higher than is achievable now - the main difficulties come from -the non-continuous monitorin -The weather conditions - the statistical point of view is the most relevant for microlensing search for exoplanets ► The ground base detection capabilities have been reached ► Dome C is the most relevant site to achieve the ultimate goal of microlensing searches for exoplanets = statistical aspect

Arnaud Cassan Optical and Infrared Wide-Field Astronomy in Antarctica ARI / ZAH Heidelberg IAP, 14 – 16 June 2006 What would Dome C provide for microlensing towards the Bulge ? Continuous monitoring of the Bulge Stable weather condition  eliminate false alerts Stable and good seeing, low background One telescope with one instrument  high improvement of photometry precision + known systematic errors

Arnaud Cassan Optical and Infrared Wide-Field Astronomy in Antarctica ARI / ZAH Heidelberg IAP, 14 – 16 June 2006 A possible setup A 2m-class telescope 28k x 28k camera 0.09 ” /pixel -> 0.5deg 2 FOV FWHM 0.25 ’’ 2 deg 2 monitored in the Bulge Time Sampling : every 20 min During Antarctica winter season: in 2005 (sun 81 days 3 – 4 weeks continuous observations (time scale < 30 d) A OGLE-like alert + following setup

Arnaud Cassan Optical and Infrared Wide-Field Astronomy in Antarctica ARI / ZAH Heidelberg IAP, 14 – 16 June 2006 Summary & Conclusion 4 extra-solar planets discovered : –2 Jupiter-like + 1 Neptune planets ( ) –A 5.5 Earth-mass planet (2006) Abundance of exoplanets around M-dwarfs –will ultimately extend to “all” stars Sensitivity/limits on multi-planetary systems Complementary to other techniques (ex. RV) Dome C is the only site on Earth that allows a continuous monitoring of the Galactic Bulge A realistic project : –Experience from an ongoing project (10 years with PLANET) –Expertise of data reduction/image subtraction technique –Expertise in modeling, statistical analysis

Arnaud Cassan Optical and Infrared Wide-Field Astronomy in Antarctica ARI / ZAH Heidelberg IAP, 14 – 16 June 2006

Arnaud Cassan Optical and Infrared Wide-Field Astronomy in Antarctica ARI / ZAH Heidelberg IAP, 14 – 16 June 2006 Magnification: u Magnification curves Einstein ring radius: (t-t 0 )/t E The single lens case

Arnaud Cassan Optical and Infrared Wide-Field Astronomy in Antarctica ARI / ZAH Heidelberg IAP, 14 – 16 June 2006 Model predictions vs. microlensing observation OGLE 2005-BLG-390Lb Ida & Lin, 2005, ApJ 246, 1045 Cassan & kubas (in preparation)

Arnaud Cassan Optical and Infrared Wide-Field Astronomy in Antarctica ARI / ZAH Heidelberg IAP, 14 – 16 June 2006 Crowded fields

Arnaud Cassan Optical and Infrared Wide-Field Astronomy in Antarctica ARI / ZAH Heidelberg IAP, 14 – 16 June 2006 Galactic microlensing

Arnaud Cassan Optical and Infrared Wide-Field Astronomy in Antarctica ARI / ZAH Heidelberg IAP, 14 – 16 June 2006

Arnaud Cassan Optical and Infrared Wide-Field Astronomy in Antarctica ARI / ZAH Heidelberg IAP, 14 – 16 June 2006 Beaulieu et al., 2006, Nature 439, OGLE 2005-BLG-390Lb : a cool 5.5 Earth-mass planet

Arnaud Cassan Optical and Infrared Wide-Field Astronomy in Antarctica ARI / ZAH Heidelberg IAP, 14 – 16 June 2006

Arnaud Cassan Optical and Infrared Wide-Field Astronomy in Antarctica ARI / ZAH Heidelberg IAP, 14 – 16 June 2006 What we know from the unique modeling Planet/star mass ratio : q = m p / M * = (7.6 ± 0.7) x Instantaneous separation/Re : d = r phys / R E = 1.61 ± 0.01 Source star distance : D S = 8.5 kpc Einstein ring crossing time : t E = 11.0 ± 0.1 days R E = v t t E = 1/c [ 4GM * D L (1-D L /D S ) ] 1/2

Arnaud Cassan Optical and Infrared Wide-Field Astronomy in Antarctica ARI / ZAH Heidelberg IAP, 14 – 16 June 2006 The mass of OGLE 2005-BLG-390Lb

Arnaud Cassan Optical and Infrared Wide-Field Astronomy in Antarctica ARI / ZAH Heidelberg IAP, 14 – 16 June 2006

Arnaud Cassan Optical and Infrared Wide-Field Astronomy in Antarctica ARI / ZAH Heidelberg IAP, 14 – 16 June 2006

Arnaud Cassan Optical and Infrared Wide-Field Astronomy in Antarctica ARI / ZAH Heidelberg IAP, 14 – 16 June 2006 Deriving physical parameters Planet mass & orbit : m p = Earth-mass a p = AU Host star : M * = M sol Lens distance : D L = 6.6 ± 1 kpc

Arnaud Cassan Optical and Infrared Wide-Field Astronomy in Antarctica ARI / ZAH Heidelberg IAP, 14 – 16 June 2006 Détection des exoplanètes Juillet 2003 (Planète jovienne) Mai 2005 (Planète jovienne) Bond et al., 2004, ApJ 606 Udalski et al., 2005, ApJ 628

Arnaud Cassan Optical and Infrared Wide-Field Astronomy in Antarctica ARI / ZAH Heidelberg IAP, 14 – 16 June 2006 Microlentilles doubles : caustiques et courbes critiques Caustiques (plan-source)Courbes critiques (plan-lentille) intermédiaire Séparation :grande faible

Arnaud Cassan Optical and Infrared Wide-Field Astronomy in Antarctica ARI / ZAH Heidelberg IAP, 14 – 16 June 2006 The microlensing effect Observer lens planesource plane Source < mas Image

Arnaud Cassan Optical and Infrared Wide-Field Astronomy in Antarctica ARI / ZAH Heidelberg IAP, 14 – 16 June 2006 The PLANET collaboration (Probing Lensing Anomalies NETwork) M. D. Albrow, J.P. Beaulieu, D. Bennett, S. Brillant, J. A. R. Caldwell, H. Calitz, A. Cassan, K. Cook, C. Coutures, M. Dominik, J. Donatowicz, D. Dominis, P. Fouqué, J. Greenhill, K. Hill, M. Hoffman, K. Horne, U. Jorgensen, S. Kane, D. Kubas, R. Martin, J. Menzies, P. Meintjes, K. R. Pollard, K. C. Sahu, J. Wambsganss, A. Williams ARI Heidelberg (Germany), IAP Paris (France), Univ. of Notre Dame (USA), Univ. of Canterbury (New Zealand), SAAO (South Africa), Boyden Observatory (South Africa), Canopus Observatory (Tasmania), Niels Bohr Institute (Denmark), Univ. of Potsdam (Germany), STSI (USA), Perth Observatory (Australia), ESO (Chile), OMP (France)