P. Nikravesh, AME, U of A Velocity Polygon for a Four-bar Introduction Velocity Polygon for a Four-bar Mechanism This presentation shows how to construct.

Slides:



Advertisements
Similar presentations
Velocity Analysis with Instant Centers for a Four-bar Mechanism
Advertisements

Analytical Analysis of A Four-bar Mechanism
Acceleration Polygon for a Four-bar Mechanism
Mechanics of Machines Dr. Mohammad Kilani
Velocity Polygon for a Crank-Slider Mechanism
Instant Centers of Velocities
P. Nikravesh, AME, U of A Instant Centers of Velocities Introduction Instant Centers of Velocities for a Six-bar Mechanism Part 2: Velocity Analysis In.
Acceleration analysis (Chapter 4)
MENG 372 Chapter 3 Graphical Linkage Synthesis
Kinematics of Rigid Bodies
Chapter 15 KINEMATICS OF RIGID BODIES
ABSOLUTE MOTION ANALYSIS (Section 16.4)
P. Nikravesh, AME, U of A Instant Centers of Velocities Introduction Instant Centers of Velocities for a Six-bar Mechanism Part 1: Finding Instant Centers.
Introduction Vectors Vectors
RIGID BODY MOTION: TRANSLATION & ROTATION (Sections )
RIGID BODY MOTION: TRANSLATION & ROTATION (Sections )
Velocity Polygon for a Crank-Slider Mechanism
RIGID BODY MOTION: TRANSLATION & ROTATION
Chapter 16 Planar Kinematics of a Rigid Body
Position synthesis1 Analytic Approach to Mechanism Design ME 324 Fall 2000
INSTANTANEOUS CENTER (IC) OF ZERO VELOCITY (Section 16.6)
Mechanics of Machines Dr. Mohammad Kilani
INSTANTANEOUS CENTER OF ZERO VELOCITY Today’s Objectives: Students will be able to: 1.Locate the instantaneous center of zero velocity. 2.Use the instantaneous.
P. Nikravesh, AME, U of A Fundamentals of Analytical Analysis 1 Introduction Fundamentals of Analytical Method For analytical kinematic (and dynamic) analysis,
Ken YoussefiMechanical Engineering Dept. 1 Force Analysis Kinetic analysis has to be performed to design the shape and thickness of the links, the joints.
P. Nikravesh, AME, U of A Acceleration Polygon for a Crank-Slider Introduction Acceleration Polygon for a Crank-Slider Mechanism This presentation shows.
Position, Velocity and Acceleration Analysis
MENG 372 Chapter 6 Velocity Analysis
P. Nikravesh, AME, U of A Mechanical systemsIntroduction Mechanical Systems This presentation describes some of the fundamental components and definitions.
P. Nikravesh, AME, U of A Fundamentals of Analytical Analysis 2Introduction Fundamentals of An Analytical Method The vector-loop method is a classical.
INSTANTANEOUS CENTER OF ZERO VELOCITY
PLANAR RIGID BODY MOTION: TRANSLATION & ROTATION
Kinematics of Rigid Bodies
Uniform Circular Motion A special kind of two-dimensional problem involves objects undergoing uniform circular motion. Uniform circular motion is motion.
RELATIVE MOTION ANALYSIS: ACCELERATION
MAE 242 Dynamics – Section I Dr. Kostas Sierros.
ED-9123 Mechanisms Design and Simulation
Mechanics of Machines Dr. Mohammad Kilani Class 3 Position Analysis.
Introduction Instant Centers for a Crank-Slider
Velocity Polygon for a Crank-Slider Mechanism
ENGR 214 Chapter 15 Kinematics of Rigid Bodies
MOTION RELATIVE TO ROTATING AXES
PLANAR KINEMATICS OF A RIGID BODY
Chapter 10 Rotational Motion.
Dynamics, Fourteenth Edition R.C. Hibbeler Copyright ©2016 by Pearson Education, Inc. All rights reserved. Today’s Objectives: Students will be able to:
Today’s Objectives: Students will be able to: a) Resolve the acceleration of a point on a body into components of translation and rotation. b) Determine.
P. Nikravesh, AME, U of A Instant Centers for a Crank-Slider Introduction Velocity Analysis with Instant Centers for a Crank-Slider Mechanism (Inversion.
Introduction Instant Centers for a Crank-Slider
Introduction Sometimes, a body has simultaneously a motion of rotation and translation, such as a wheel of a car, a sphere rolling (not slipping) on the.
MOHR'S CIRCLE The formulas developed in the preceding article may be used for any case of plane stress. A visual interpretation of them, devised by the.
Moment. In addition to the tendency to move a body in the direction of its application, a force can also tend to rotate a body about an axis. The axis.
KINEMATICS OF PARTICLES RELATIVE MOTION WITH RESPECT TO TRANSLATING AXES.
Chapter 10 Lecture 18: Rotation of a Rigid Object about a Fixed Axis: II.
DYNAMICS VECTOR MECHANICS FOR ENGINEERS: DYNAMICS Tenth Edition Ferdinand P. Beer E. Russell Johnston, Jr. Phillip J. Cornwell Lecture Notes: Brian P.
VECTOR MECHANICS FOR ENGINEERS: DYNAMICS Seventh Edition Ferdinand P. Beer E. Russell Johnston, Jr. Lecture Notes: J. Walt Oler Texas Tech University CHAPTER.
Dynamics, Fourteenth Edition R.C. Hibbeler Copyright ©2016 by Pearson Education, Inc. All rights reserved. Today’s Objectives: Students will be able to:
Acceleration Analysis
Kinetics of Particles: Newton’s Second Law
KINEMATICS OF RIGID BODY
Subject Name: Dynamics of Machines Subject Code: 10AE53
INSTANTANEOUS CENTER OF ZERO VELOCITY
Graphical Analysis: Positions, Velocity and Acceleration (simple joints) ME 3230 Dr. R. Lindeke ME /20/2018.
Amardeep & Nirmal ,Dept of Aero, Mvjce
STATICS (ENGINEERING MECHANICS-I)
RIGID BODY MOTION (Section 16.1)
ME321 Kinematics and Dynamics of Machines
Acceleration analysis (Chapter 4)
Acceleration analysis (Chapter 4)
Grashofs criterion One extreme configuration. If this configuration is reached, further anticlockwise rotation of crank is feasible without snapping the.
KINEMATICS OF MACHINERY
Presentation transcript:

P. Nikravesh, AME, U of A Velocity Polygon for a Four-bar Introduction Velocity Polygon for a Four-bar Mechanism This presentation shows how to construct the velocity polygon for a given four-bar mechanism. It is assumed that the dimensions for the links are known and the analysis is being performed at a given (known) configuration. Since the four-bar has one degree-of-freedom, the angular velocity of one of the links must be given as well. As an example, for the four-bar shown on the left we will learn: 1. How to construct the polygon shown on the right 2. How to extract velocity information from the polygon A O4O4 B O2O2 ω2ω2 V t A V t B V t BA A B OVOV

P. Nikravesh, AME, U of A Velocity Polygon for a Four-barExample 1 The first example shows us how to construct the velocity polygon for a typical four-bar, such as the one shown on this slide. It is assumed that all the lengths are known and the four-bar is being analyzed at the configuration shown; i.e., all the angles are known. Furthermore, it is assumed that the angular velocity of the crank (link 2) is given (known magnitude and direction). Introduction A O4O4 B O2O2 ω2ω2

P. Nikravesh, AME, U of A Velocity Polygon for a Four-bar Velocity analysis We define four position vectors to obtain a vector loop equation: R AO 2 + R BA = R O 4 O 2 + R BO 4 The time derivative of this equation yields the velocity loop equation: V AO 2 + V BA = V O 4 O 2 + V BO 4 Since R O 4 O 2 is fixed to the ground, V O 4 O 2 = 0. Since any velocity vector with respect to a fixed point only needs one subscript, we can further simplify the velocity loop equation: A O4O4 B R BO 4 RO4O2RO4O2 R BA R AO 2 Vector loop O2O2 ω2ω2 V A + V BA = V B For clarification purposes we assign superscript “t” to these vectors indicating they are tangential : V t A + V t BA = V t B ►

P. Nikravesh, AME, U of A Velocity Polygon for a Four-bar We can calculate V t A : V t A = ω 2 ∙ R AO 2 The direction is found by rotating R AO 2 90° in the direction of ω 2 : The direction of V t BA is perpendicular to R BA : The direction of V t B is perpendicular to R BO 4 : V A and lines of action A O4O4 B R BO 4 RO4O2RO4O2 R BA V t A O2O2 V t A + V t BA = V t B R AO 2 ω2ω2 ► ► ►

P. Nikravesh, AME, U of A Velocity Polygon for a Four-bar To construct the velocity polygon we select an origin and draw V t A : V t B starts at the origin. We know the line of action: V t BA starts at A. We also know the line of action: Now we can complete the velocity polygon: Note that this polygon represents the velocity loop equation shown above! Velocity polygon A O4O4 B R BO 4 RO4O2RO4O2 V t A V t B V t BA V t A O2O2 V t A + V t BA = V t B A B OVOV R AO 2 ω2ω2 R BA ► ► ► ►

P. Nikravesh, AME, U of A Velocity Polygon for a Four-bar We can determine ω 3 : ω 3 = V t BA / R BA R BA has to be rotated 90° clockwise to point in the same direction as V t BA. Therefore ω 3 is clockwise: To determine ω 4 : ω 4 = V t B / R BO 4 R BO 4 has to be rotated 90° counter-clockwise to point in the same direction as V t B. Therefore ω 4 is ccw: ω4ω4 ω3ω3 Angular velocities A O4O4 B R BO 4 RO4O2RO4O2 R BA O2O2 V t A V t B V t BA V t A R AO 2 ω2ω2 A B OVOV ► ►

P. Nikravesh, AME, U of A Velocity Polygon for a Four-barExample 2 The second example shows how to construct the velocity polygon for another typical four-bar. In addition, we learn how to determine the velocity of a coupler point from the polygon. Similar to the first example, it is assumed that all the lengths are known and the four-bar is being analyzed at the configuration shown; i.e., all the angles are known. Furthermore, it is assumed that the angular velocity of the crank (link 2) is given (known magnitude and direction). P A O4O4 B O2O2 ω2ω2

P. Nikravesh, AME, U of A Velocity Polygon for a Four-bar P Velocity analysis We define four position vectors to obtain a vector loop equation: R AO 2 + R BA = R O 4 O 2 + R BO 4 Note that we first construct the vector loop containing the primary links and points. Point P is not a primary point--it will be consider later for analysis. Since the vectors have constant lengths the time derivatives are tangential velocities: V t AO 2 + V t BA = V t O 4 O 2 + V t BO 4 Discard zero vectors and subscripts referring to non-moving points: V t A + V t BA = V t B A O4O4 B R BO 4 RO4O2RO4O2 R BA R AO 2 O2O2 ω2ω2 Vector loop ►

P. Nikravesh, AME, U of A Velocity Polygon for a Four-bar A O4O4 R BO 4 RO4O2RO4O2 R AO 2 V t A O2O2 ω2ω2 V A and lines of action We can calculate V t A : V t A = ω 2 ∙ R AO 2 The direction is found by rotating R AO 2 90° in the direction of ω 2 : The direction of V t BA is perpendicular to R BA : The direction of V t B is perpendicular to R BO 4 : P B R BA ► ► ► V t A + V t BA = V t B

P. Nikravesh, AME, U of A Velocity Polygon for a Four-bar V t A V t BA V t B OVOV A B Velocity polygon A O4O4 R BO 4 RO4O2RO4O2 R AO 2 V t A O2O2 ω2ω2 To construct the velocity polygon we select the origin and draw V t A : V t B starts at the origin. We know the line of action: V t BA starts at A. We also know the line of action: Now we can complete the velocity polygon: Note that this polygon represents the velocity loop equation shown above! P B R BA ► ► ► ► V t A + V t BA = V t B

P. Nikravesh, AME, U of A Velocity Polygon for a Four-bar V t A V t BA V t B OVOV A B Velocity of coupler point P A O4O4 B R BO 4 RO4O2RO4O2 R AO 2 V t A O2O2 ω2ω2 P In order to determine the Velocity of point P we rotate the line AP 90° and move it to point A in the velocity polygon: Next we rotate the line BP 90° and move it to point B in the velocity polygon: The point of intersection is point P in the velocity polygon. Now we can draw V P : P VPVP R BA ► ► ►

P. Nikravesh, AME, U of A Velocity Polygon for a Four-bar V t A V t BA V t B OVOV A B Angular velocities A O4O4 B R BO 4 RO4O2RO4O2 R BA R AO 2 V t A O2O2 ω2ω2 P P V t P We can determine ω 3 : ω 3 = V t BA / R BA R BA has to be rotated 90° clockwise to point in the same direction as V t BA. Therefore ω 3 is clockwise: To determine ω 4 : ω 4 = V t B / R BO 4 R BO 4 has to be rotated 90° clockwise to point in the same direction as V t B. Therefore ω 4 is clockwise: ω3ω3 ω4ω4 ► ►