1. mring= mdisk, where m is the inertial mass.

Slides:



Advertisements
Similar presentations
Angular Quantities Correspondence between linear and rotational quantities:
Advertisements

CH 10: Rotation.
Torque Rotational Equilibrium Rotational Dynamics
Torque, Equilibrium, and Stability
Angular Momentum The vector angular momentum of the point mass m about the point P is given by: The position vector of the mass m relative to the point.
Rotational Motion Chapter Opener. Caption: You too can experience rapid rotation—if your stomach can take the high angular velocity and centripetal acceleration.
Physics 203 College Physics I Fall 2012
Classical Mechanics Lecture 15
Copyright © 2012 Pearson Education Inc. Rotational Kinematics, Inertia Physics 7C lecture 11 Tuesday November 5, 8:00 AM – 9:20 AM Engineering Hall 1200.
Rigid body rotations inertia. Constant angular acceleration.
Torque Rotational Motion. Torque  Forces that cause objects to rotate  Two Characteristics that contribute to the effectiveness of torque: Magnitude.
 orque  orque  orque  orque  orque  orque  orque  orque  orque Chapter 10 Rotational Motion 10-4 Torque 10-5 Rotational Dynamics; Torque and Rotational.
Dynamics of Rotational Motion
Torque and Center of Mass
Torque and Rotational Equilibrium
© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
Physics 1D03 - Lecture 101 Torque Text Sections : 10.6 Torque in 2 and 3 dimensions.
Summary Lecture 12 Rotational Motion 10.8Torque 10.9Newton 2 for rotation Work and Power 11.2Rolling motion Rotational Motion 10.8Torque 10.9Newton.
Physics 111: Mechanics Lecture 09
Chapter 10: Rotation. Rotational Variables Radian Measure Angular Displacement Angular Velocity Angular Acceleration.
Chapter 10 Rotational Motion
Physics 106: Mechanics Lecture 02
Example: Determine the angle between the vectors A and B.
2D – Force Systems Choose appropriate coordinate system for situation. Standard x-horizontal and y-vertical system may not be the best choice! Relate forces.
Halliday/Resnick/Walker Fundamentals of Physics 8th edition
Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.
Rotation and angular momentum
Rotation about a fixed axis
Parallel-Axis Theorem
Chapter 10 Rotational Motion.
Chapter 10 Rotational Motion.
Thursday, Oct. 23, 2014PHYS , Fall 2014 Dr. Jaehoon Yu 1 PHYS 1443 – Section 004 Lecture #17 Thursday, Oct. 23, 2014 Dr. Jaehoon Yu Torque & Vector.
Chapter 11 Angular Momentum.
Chapter 8: Torque and Angular Momentum
College of Physics Science & Technology YANGZHOU UNIVERSITYCHINA Chapter 11ROTATION 11.1 The Motion of Rigid Bodies Rigid bodies A rigid body is.
Chapter 9 Rotations of Rigid Bodies Up to this point when studying the motion of objects we have made the (implicit) assumption that these are “point objects”
Give the expression for the velocity of an object rolling down an incline without slipping in terms of h (height), M(mass), g, I (Moment of inertia) and.
Chapters 10, 11 Rotation and angular momentum. Rotation of a rigid body We consider rotational motion of a rigid body about a fixed axis Rigid body rotates.
Rotation Rotational Variables Angular Vectors Linear and Angular Variables Rotational Kinetic Energy Rotational Inertia Parallel Axis Theorem Newton’s.
Rotational Dynamics Just as the description of rotary motion is analogous to translational motion, the causes of angular motion are analogous to the causes.
Torque Chap 8 Units: m N 2.
11 rotation The rotational variables Relating the linear and angular variables Kinetic energy of rotation and rotational inertia Torque, Newton’s second.
今日課程內容 CH10 轉動 角位移、角速度、角加速度 等角加速度運動 力矩 轉動牛頓第二運動定律 轉動動能 轉動慣量.
Chapter 8 Rotational Motion.
Two-Dimensional Rotational Kinematics 8.01 W09D1 Young and Freedman: 1.10 (Vector Products) , 10.5.
Chapter 10 Chapter 10 Rotational motion Rotational motion Part 2 Part 2.
Chapter 11: Rotational Dynamics  As we did for linear (or translational) motion, we studied kinematics (motion without regard to the cause) and then dynamics.
Rotation of a Rigid Object about a Fixed Axis
Chapter 10 Rotational Motion.
1/11/ L IAP 2006  Last Lecture  Statics and dynamics of rotational motion  Today  Everything you need to know about dynamics of rotation  Important.
Rotational kinematics and energetics
Rotational Kinetic Energy An object rotating about some axis with an angular speed, , has rotational kinetic energy even though it may not have.
Torque. So far we have analyzed translational motion in terms of its angular quantities. But we have really only focused on the kinematics and energy.
Torque is a twisting force. It’s magnitude is r x F. Where r is the “moment arm” or distance to the axis of rotation. You can increase torque by just increasing.
Physics CHAPTER 8 ROTATIONAL MOTION. The Radian  The radian is a unit of angular measure  The radian can be defined as the arc length s along a circle.
Chapter 19 Magnetic Force on Charges and Current- Carrying Wires.
Rotational Vectors and Angular Momentum. Angular Velocity Angular velocity is a vector and its direction is perpendicular to the plane of rotation. Right-hand.
1 Rotation of a Rigid Body Readings: Chapter How can we characterize the acceleration during rotation? - translational acceleration and - angular.
Rotational Motion – Dynamics AP Physics. Rotational and Translational Equalities Rotational Objects roll Inertia TORQUE Angular Acceleration Rotational.
Short Version : 10. Rotational Motion Angular Velocity & Acceleration (Instantaneous) angular velocity Average angular velocity  = angular displacement.
Counterclockwise Turning Effect Clockwise Turning Effect In our last lab we found that the “turning effect” depends on the force and the lever arm. Where.
Wednesday, Oct. 29, 2003PHYS , Fall 2003 Dr. Jaehoon Yu 1 PHYS 1443 – Section 003 Lecture #17 Wednesday, Oct. 29, 2002 Dr. Jaehoon Yu 1.Rolling.
 orque  orque  orque  orque  orque  orque  orque  orque  orque Chapter 10 Rotational Motion 10-4 Torque 10-5 Rotational Dynamics; Torque and Rotational.
Chapter 10 Lecture 18: Rotation of a Rigid Object about a Fixed Axis: II.
1 7. Rotational motion In pure rotation every point of an object moves in a circle whose center lies on the axis of rotation (in translational motion the.
1 Angular Momentum Chapter 11 © 2012, 2016 A. Dzyubenko © 2004, 2012 Brooks/Cole © 2004, 2012 Brooks/Cole Phys 221
Torque.
Angular Vectors.
Figure 10.16  A particle rotating in a circle under the influence of a tangential force Ft. A force Fr in the radial direction also must be present to.
Chapter 11 - Rotational Dynamics
Presentation transcript:

1. mring= mdisk, where m is the inertial mass. A solid disk and a ring roll down an incline. The ring is slower than the disk if 1. mring= mdisk, where m is the inertial mass. 2. rring = rdisk, where r is the radius. 3. mring = mdisk and rring = rdisk. 4. The ring is always slower regardless of the relative values of m and r. Answer: 4. The ring has more rotational inertia per unit mass than the disk. Therefore as it starts rolling, it has a relatively larger fraction of its total kinetic energy in rotational form and so its translational kinetic energy is lower than that of the disk. As the disk and ring roll down the incline, the potential energy of each is reduced by an amount mgh, where h is the difference in height between the bottom and top of the incline.This energy is converted to kinetic energy (translational and rotational): mgh = 1⁄2 mv2 + 1⁄2 Iω2.We can write the rotational inertia as I= cmR2,where c is a constant equal to 1 for the ring and 1⁄2 for the disk.Because ω= v/R,we have:mgh= 1⁄2mv2+ 1⁄2 cmR2(v/R)2= 1⁄2 (1 + c)mv2. The larger c, therefore, the smaller v.Thus the ring, which has the larger rotational inertia, takes longer to go down the incline, regardless of inertia and radius.

Example: Determine the rotational inertia of a cylinder about its central axis. z Total volume of cylinder Total mass of cylinder Rotational Inertia of a solid cylinder rotating about its longitudinal axis.

Parallel-Axis Theorem The rotational inertial of different objects through an axis of symmetry was shown for several objects. If the rotation axis is shifted away from an axis of symmetry the calculation becomes more difficult. A simple method, called the parallel axis theorem, was devised for situations where the rotation axis was shifted some distance from the symmetry axis. The symmetry axis is any axis that passes through the center of mass. I – rotational inertia ICM – Rotational inertia for a rotation axis that passes through the center of mass M – Total mass of the object D – Distance the axis has been shifted by The new rotation axis must be parallel to the symmetry axis that is being used to define ICM.

Vector Product (Cross-product) There are two different methods for determining the vector product between any two vectors: The Determinant method and the Cyclic method Determinant Method Cyclic Method Rewrite the j term as to get an identical expression

The direction of the resultant vector, for a right-handed coordinate system, for a vector product can be determined using the right-hand rule. Fingers point in the direction of the second vector The vector product looks at the product of two vectors which are perpendicular to each other, and who are also perpendicular to the resultant vector. Thumb points in the direction of first vector. Palm points in the direction of resultant vector. Example: Determine the magnitude and direction of the area of a parallelogram described by the vectors r1 and r2 which are used to describe the length of the two sides. y x r1 r2 Out of the page

Torque When a force is applied to an object it will cause it to accelerate. This acceleration would correspond to a change in the velocity of the object. The velocity could be a translational velocity or a rotational velocity. A torque is a force that causes a change in the angular velocity of the object. r1 r2 q1 q2 The force F1 will cause a counterclockwise rotation about an axis that passes through O. The force F2 will cause a clockwise rotation about an axis that passes through O. r is the distance from the origin O to the point of application of F. d is the lever arm for F which is the distance from O to F such that d is perpendicular to F. t – Torque [Nm] r – distance from axis of rotation [m] F – Force [N] q – angle measured from r to F d = rsinq this is the lever arm, the component of r perpendicular to F The direction of the torque vector is perpendicular to both r and F. The directions clockwise and counterclockwise are used to describe the direction the torque causes the object to rotate.