Identify line symmetry and rotational symmetry.

Slides:



Advertisements
Similar presentations
Benchmark 21 I can identify congruency theorems, SSS, SAS, ASA, AAS, and HL in diagrams.
Advertisements

9-3 Rotations You identified rotations and verified them as congruence transformations. Draw rotations. Draw rotations in the coordinate plane.
11.5 Rotations. Rotations Rotate a Figure 90 about the origin.
Warm Up Draw an example of a reflection: Draw an example of a figure that has one or more lines of symmetry: Find the new coordinates of the image after.
Over Lesson 11–1 A.A B.B C.C D.D 5-Minute Check 1 In the figure, a║b and t is a transversal. If m  3 = 37°, find the measure of the other seven angles.
8.9 Congruent Polygons I can identify congruent figures and use congruence to solve problems.
Splash Screen. Lesson Menu Five-Minute Check (over Lesson 9–5) NGSSS Then/Now Key Concept: Dilation Example 1:Draw a Dilation Example 2:Real-World Example:
1.6 Rotations and Rotational Symmetry
Splash Screen.
Symmetry and Dilations
Graph reflections on a coordinate plane.
8-11 Line Symmetry Warm Up Problem of the Day Lesson Presentation
Splash Screen. Lesson Menu Five-Minute Check (over Lesson 6–5) Main Idea and Vocabulary Example 1:Draw a Reflection Example 2:Reflect a Figure Over an.
5-7 Transformations Warm Up Problem of the Day Lesson Presentation
Quiz Determine the slope of each line. 1. PQ 2. MN 3. Which pair of lines are parallel? In the figure, WXYZ  ABCD 4. Find XY. 5. Find mB.
Lesson 5 Menu Five-Minute Check (over Lesson 6-4) Main Idea and Vocabulary Targeted TEKS Example 1: Identify Line Symmetry Example 2: Identify Line Symmetry.
Pre-Algebra 5.8 Symmetry. Warm Up Identify each as a translation, rotation, reflection, or none of these. A. B. reflection rotation C. D. none of the.
Describing Rotations.
12-5 Symmetry Holt Geometry.
Symmetry 9-5 Warm Up Lesson Presentation Lesson Quiz
1 Rotations and Symmetry 13.6 LESSON Family Crests A family crest is a design that symbolizes a family’s heritage. An example of a family crest for a Japanese.
Splash Screen. Lesson Menu Five-Minute Check (over Lesson 11–2) Then/Now New Vocabulary Example 1:Rotate a Figure about a Point Example 2:Rotate a Figure.
7-8 Symmetry Course 3 Warm Up Warm Up Problem of the Day Problem of the Day Lesson Presentation Lesson Presentation.
Splash Screen. Lesson Menu Five-Minute Check (over Lesson 9–4) CCSS Then/Now New Vocabulary Key Concept: Line Symmetry Example 1:Real-World Example: Identify.
4.8 – Perform Congruence Transformations
Splash Screen. Lesson Menu Five-Minute Check (over Lesson 9–5) CCSS Then/Now Key Concept: Dilation Example 1:Draw a Dilation Example 2:Real-World Example:
Splash Screen. Lesson Menu Five-Minute Check (over Lesson 9–4) NGSSS Then/Now New Vocabulary Key Concept: Line Symmetry Example 1:Real-World Example:
Warm Up Problem of the Day Lesson Presentation Lesson Quizzes.
Vocabulary symmetry line symmetry line of symmetry rotational symmetry center of symmetry order of symmetry magnitude of symmetry.
Transparency 6 Click the mouse button or press the Space Bar to display the answers.
GEOMETRY A CHAPTER 11 ROTATIONS ASSIGNMENT 2 1.What type of transformations are isometries? Reflection, Translation, Rotation, any transformation that.
Vocabulary Transformation symmetry line symmetry line of symmetry
Splash Screen. Lesson Menu Five-Minute Check (over Lesson 9–5) Then/Now Key Concept: Dilation Example 1:Draw a Dilation Example 2:Real-World Example:
Splash Screen. Lesson Menu Five-Minute Check (over Lesson 13–8) Main Idea Example 1:Identify a Transformation Example 2:Identify a Transformation.
Splash Screen.
7-2: Exploring Dilations and Similar Polygons Expectation: G3.2.1: Know the definition of dilation and find the image of a figure under a dilation. G3.2.2:
Lesson Menu Main Idea and New Vocabulary NGSSS Key Concept:Similar Polygons Example 1:Identify Similar Polygons Example 2:Find Missing Measures Key Concept:Ratios.
Warm Up 1.      360 Course Symmetry
Symmetry 9-5 Warm Up Lesson Presentation Lesson Quiz
Reflections and Symmetry
Holt McDougal Geometry 9-5 Symmetry Warm Up Identify each transformation. 3. A(3, –4), B(5, 1), C(–4, 0); 180° Rotate ∆ABC with the given vertices.
Symmetry 9-5 Warm Up Lesson Presentation Lesson Quiz
Postulate & Theorems for Similar Triangles Unit 6: Lesson
Splash Screen. Lesson Menu Five-Minute Check (over Lesson 11–1) Then/Now New Vocabulary Key Concept: Corresponding Parts of Congruent Triangles Example.
Work on this as a table! QUIETLY! Determine the slope of each line. 1. PQ 2. MN 3. MQ 4. NP 5. Which pair of lines are parallel? – 10 3 MN, RQ.
Splash Screen.
LESSON 9–3 Rotations.
Click the mouse button or press the Space Bar to display the answers.
Splash Screen.
5-7 Transformations Warm Up Problem of the Day Lesson Presentation
Splash Screen.
Warm Up Lesson Presentation Lesson Quiz
Starter(s) Find the coordinates of the figure under the given translation. RS with endpoints R(1, –3) and S(–3, 2) along the translation vector 2, –1
Drawing Triangles.
Warm-Up Graph the image of the polygon with vertices A(0,2), B(-2,-3), C(2, -3) after a dilation centered at the origin with a scale factor of 2.
Splash Screen.
Congruence and Transformations
Starter(s) Triangle XYZ has vertices X(–3, 1), Y(–4, 5), and Z(0, 5). Graph ΔXYZ and its image after the indicated glide reflection. Translation: along.
CPCTC.
Splash Screen.
Congruence Transformations
Algebra 1 Section 3.3.
Chapter 8 Proving Triangles Congruent
Splash Screen.
9.5: Symmetry.
Congruence Lesson 9-5.
Five-Minute Check (over Lesson 3–4) Mathematical Practices Then/Now
Geometric Transformations
Five-Minute Check (over Lesson 1–6) Mathematical Practices Then/Now
LESSON 9–5 Symmetry.
Presentation transcript:

Identify line symmetry and rotational symmetry. line of symmetry rotational symmetry angle of rotation Main Idea/Vocabulary

Identify Line Symmetry Determine whether the figure has line symmetry. If it does, draw all lines of symmetry. If not, write none. Answer: This figure has one vertical line of symmetry. Example 1

BOTANY Determine whether the leaf has line symmetry BOTANY Determine whether the leaf has line symmetry. If it does, draw all lines of symmetry. If not, write none. A. none B. 1 line C. 2 lines D. 3 lines A B C D Example 1

Identify Rotational Symmetry FLOWERS Determine whether the flower design has rotational symmetry. Write yes or no. If yes, name its angle(s) of rotation. Example 2

Identify Rotational Symmetry Answer: Yes, this figure has rotational symmetry. It will match itself after being rotated 90, 180, and 270. Example 2

FLOWERS Determine whether the flower design has rotational symmetry FLOWERS Determine whether the flower design has rotational symmetry. Write yes or no. If yes, name its angle(s) of rotation. A B C D A. yes, 90° B. yes, 120° C. yes, 180° D. no Example 2

Use a Rotation ARCHITECTURE A rosette is a painted or sculptured ornament, usually circular, having designs that radiate symmetrically from the center. Copy and complete the picture of the rosette shown so that the completed figure has rotational symmetry with 90, 180, and 270 as its angles of rotation. Example 3

Use a Rotation Use the procedure described above and the points indicated to rotate the figure 90, 180, and 270 counterclockwise. Use a 90 rotation clockwise to produce the same rotation as a 270 rotation counterclockwise. Answer: 90° counterclockwise 180° counterclockwise 90° clockwise Example 3

DESIGN Copy and complete the figure so that the completed design has rotational symmetry with 90, 180, and 270 as its angles of rotation. A. B. C. D. A B C D Example 3

(over Lesson 6-4) Determine whether the polygons are congruent. If so, list their congruent parts. A. yes; A  X, B  Z, C  Y, AB  XY, BC  YZ, AC  XZ, ΔABC  ΔXYZ B. yes; A  X, B  Y, C  Z, AB  XY, BC  YZ, AC  XZ, ΔABC  ΔXYZ C. no A B C Five Minute Check 1

(over Lesson 6-4) Determine whether the polygons are congruent. If so, list their congruent parts. A. B. C. no A B C Five Minute Check 2

In the figure, ΔCLS  ΔFIJ. Find mI. (over Lesson 6-4) In the figure, ΔCLS  ΔFIJ. Find mI. A. 30° B. 45° C. 60° D. 75° A B C D Five Minute Check 3

If ΔABC  ΔXYZ, which of the following options is not true? (over Lesson 6-4) If ΔABC  ΔXYZ, which of the following options is not true? A. B. C. D. A B C D Five Minute Check 4

End of Custom Shows